本文主要是介绍tritonserver学习之六:自定义c++、python custom backend实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
tritonserver学习之一:triton使用流程
tritonserver学习之二:tritonserver编译
tritonserver学习之三:tritonserver运行流程
tritonserver学习之四:命令行解析
tritonserver学习之五:backend实现机制
1、环境准备(Ubuntu2004)
1.1 cmake安装
triton backend的编译,cmake的版本要3.17以上,从这里下载当前最新版本cmake,3.28版本:
https://githubfast.com/Kitware/CMake/releases/download/v3.28.1/cmake-3.28.1.tar.gz
进行环境检查:
tar zxvf cmake-3.28.1.tar.gz
cd cmake-3.28.1/
./bootstrap
你可能会遇到如下情况:
这种情况需要安装openssl:
sudo apt-get install libssl-dev
安装完成后,重新执行bootstrap则运行成功。
运行make && sudo make install.
1.2 RapidJSON安装
clone代码:
git clone https://github.com/miloyip/rapidjson.git
最近github抽风,如果clone不下来就用如下命令:
git clone https://githubfast.com/miloyip/rapidjson.git
cd rapidjson
mkdir build
cd build
make && make install
2、c++ 自定义backend
2.1 自定义backend编译
c++自定义backend,上一篇文章:tritonserver学习之五:backend实现机制,有介绍,需要实现7个api,我们以backend代码库的recommended.cc为例,在调试过程中,我是复制了,路径如下:backend/examples/backends/liupeng,稍作改动加一些打印帮助理解:
// Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.#include "triton/backend/backend_common.h"
#include "triton/backend/backend_input_collector.h"
#include "triton/backend/backend_model.h"
#include "triton/backend/backend_model_instance.h"
#include "triton/backend/backend_output_responder.h"
#include "triton/core/tritonbackend.h"namespace triton { namespace backend { namespace recommended {//
// Backend that demonstrates the TRITONBACKEND API. This backend works
// for any model that has 1 input with any datatype and any shape and
// 1 output with the same shape and datatype as the input. The backend
// supports both batching and non-batching models.
//
// For each batch of requests, the backend returns the input tensor
// value in the output tensor.
///extern "C" {// Triton calls TRITONBACKEND_Initialize when a backend is loaded into
// Triton to allow the backend to create and initialize any state that
// is intended to be shared across all models and model instances that
// use the backend. The backend should also verify version
// compatibility with Triton in this function.
//
TRITONSERVER_Error*
TRITONBACKEND_Initialize(TRITONBACKEND_Backend* backend)
{const char* cname;RETURN_IF_ERROR(TRITONBACKEND_BackendName(backend, &cname));std::string name(cname);LOG_MESSAGE(TRITONSERVER_LOG_INFO,(std::string("TRITONBACKEND_Initialize: ") + name).c_str());// Check the backend API version that Triton supports vs. what this// backend was compiled against. Make sure that the Triton major// version is the same and the minor version is >= what this backend// uses.uint32_t api_version_major, api_version_minor;RETURN_IF_ERROR(TRITONBACKEND_ApiVersion(&api_version_major, &api_version_minor));LOG_MESSAGE(TRITONSERVER_LOG_INFO,(std::string("Triton TRITONBACKEND API version: ") +std::to_string(api_version_major) + "." +std::to_string(api_version_minor)).c_str());LOG_MESSAGE(TRITONSERVER_LOG_INFO,(std::string("'") + name + "' TRITONBACKEND API version: " +std::to_string(TRITONBACKEND_API_VERSION_MAJOR) + "." +std::to_string(TRITONBACKEND_API_VERSION_MINOR)).c_str());if ((api_version_major != TRITONBACKEND_API_VERSION_MAJOR) ||(api_version_minor < TRITONBACKEND_API_VERSION_MINOR)) {return TRITONSERVER_ErrorNew(TRITONSERVER_ERROR_UNSUPPORTED,"triton backend API version does not support this backend");}// The backend configuration may contain information needed by the// backend, such as tritonserver command-line arguments. This// backend doesn't use any such configuration but for this example// print whatever is available.TRITONSERVER_Message* backend_config_message;RETURN_IF_ERROR(TRITONBACKEND_BackendConfig(backend, &backend_config_message));const char* buffer;size_t byte_size;RETURN_IF_ERROR(TRITONSERVER_MessageSerializeToJson(backend_config_message, &buffer, &byte_size));LOG_MESSAGE(TRITONSERVER_LOG_INFO,(std::string("backend configuration:\n") + buffer).c_str());// This backend does not require any "global" state but as an// example create a string to demonstrate.std::string* state = new std::string("backend state");RETURN_IF_ERROR(TRITONBACKEND_BackendSetState(backend, reinterpret_cast<void*>(state)));return nullptr; // success
}// Triton calls TRITONBACKEND_Finalize when a backend is no longer
// needed.
//
TRITONSERVER_Error*
TRITONBACKEND_Finalize(TRITONBACKEND_Backend* backend)
{// Delete the "global" state associated with the backend.void* vstate;RETURN_IF_ERROR(TRITONBACKEND_BackendState(backend, &vstate));std::string* state = reinterpret_cast<std::string*>(vstate);LOG_MESSAGE(TRITONSERVER_LOG_INFO,(std::string("TRITONBACKEND_Finalize: state is '") + *state + "'").c_str());delete state;return nullptr; // success
}} // extern "C"///
// ModelState
//
// State associated with a model that is using this backend. An object
// of this class is created and associated with each
// TRITONBACKEND_Model. ModelState is derived from BackendModel class
// provided in the backend utilities that provides many common
// functions.
//
class ModelState : public BackendModel {public:static TRITONSERVER_Error* Create(TRITONBACKEND_Model* triton_model, ModelState** state);virtual ~ModelState() = default;// Name of the input and output tensorconst std::string& InputTensorName() const { return input_name_; }const std::string& OutputTensorName() const { return output_name_; }// Datatype of the input and output tensorTRITONSERVER_DataType TensorDataType() const { return datatype_; }// Shape of the input and output tensor as given in the model// configuration file. This shape will not include the batch// dimension (if the model has one).const std::vector<int64_t>& TensorNonBatchShape() const { return nb_shape_; }// Shape of the input and output tensor, including the batch// dimension (if the model has one). This method cannot be called// until the model is completely loaded and initialized, including// all instances of the model. In practice, this means that backend// should only call it in TRITONBACKEND_ModelInstanceExecute.TRITONSERVER_Error* TensorShape(std::vector<int64_t>& shape);// Validate that this model is supported by this backend.TRITONSERVER_Error* ValidateModelConfig();private:ModelState(TRITONBACKEND_Model* triton_model);std::string input_name_;std::string output_name_;TRITONSERVER_DataType datatype_;bool shape_initialized_;std::vector<int64_t> nb_shape_;std::vector<int64_t> shape_;
};ModelState::ModelState(TRITONBACKEND_Model* triton_model): BackendModel(triton_model), shape_initialized_(false)
{// Validate that the model's configuration matches what is supported// by this backend.THROW_IF_BACKEND_MODEL_ERROR(ValidateModelConfig());
}TRITONSERVER_Error*
ModelState::Create(TRITONBACKEND_Model* triton_model, ModelState** state)
{try {*state = new ModelState(triton_model);}catch (const BackendModelException& ex) {RETURN_ERROR_IF_TRUE(ex.err_ == nullptr, TRITONSERVER_ERROR_INTERNAL,std::string("unexpected nullptr in BackendModelException"));RETURN_IF_ERROR(ex.err_);}return nullptr; // success
}TRITONSERVER_Error*
ModelState::TensorShape(std::vector<int64_t>& shape)
{// This backend supports models that batch along the first dimension// and those that don't batch. For non-batch models the output shape// will be the shape from the model configuration. For batch models// the output shape will be the shape from the model configuration// prepended with [ -1 ] to represent the batch dimension. The// backend "responder" utility used below will set the appropriate// batch dimension value for each response. The shape needs to be// initialized lazily because the SupportsFirstDimBatching function// cannot be used until the model is completely loaded.if (!shape_initialized_) {bool supports_first_dim_batching;RETURN_IF_ERROR(SupportsFirstDimBatching(&supports_first_dim_batching));if (supports_first_dim_batching) {shape_.push_back(-1);}shape_.insert(shape_.end(), nb_shape_.begin(), nb_shape_.end());shape_initialized_ = true;}shape = shape_;return nullptr; // success
}TRITONSERVER_Error*
ModelState::ValidateModelConfig()
{// If verbose logging is enabled, dump the model's configuration as// JSON into the console output.if (TRITONSERVER_LogIsEnabled(TRITONSERVER_LOG_VERBOSE)) {common::TritonJson::WriteBuffer buffer;RETURN_IF_ERROR(ModelConfig().PrettyWrite(&buffer));LOG_MESSAGE(TRITONSERVER_LOG_VERBOSE,(std::string("model configuration:\n") + buffer.Contents()).c_str());}// ModelConfig is the model configuration as a TritonJson// object. Use the TritonJson utilities to parse the JSON and// determine if the configuration is supported by this backend.common::TritonJson::Value inputs, outputs;RETURN_IF_ERROR(ModelConfig().MemberAsArray("input", &inputs));RETURN_IF_ERROR(ModelConfig().MemberAsArray("output", &outputs));// The model must have exactly 1 input and 1 output.RETURN_ERROR_IF_FALSE(inputs.ArraySize() == 1, TRITONSERVER_ERROR_INVALID_ARG,std::string("model configuration must have 1 input"));RETURN_ERROR_IF_FALSE(outputs.ArraySize() == 1, TRITONSERVER_ERROR_INVALID_ARG,std::string("model configuration must have 1 output"));common::TritonJson::Value input, output;RETURN_IF_ERROR(inputs.IndexAsObject(0, &input));RETURN_IF_ERROR(outputs.IndexAsObject(0, &output));// Record the input and output name in the model state.const char* input_name;size_t input_name_len;RETURN_IF_ERROR(input.MemberAsString("name", &input_name, &input_name_len));input_name_ = std::string(input_name);const char* output_name;size_t output_name_len;RETURN_IF_ERROR(output.MemberAsString("name", &output_name, &output_name_len));output_name_ = std::string(output_name);// Input and output must have same datatypestd::string input_dtype, output_dtype;RETURN_IF_ERROR(input.MemberAsString("data_type", &input_dtype));RETURN_IF_ERROR(output.MemberAsString("data_type", &output_dtype));RETURN_ERROR_IF_FALSE(input_dtype == output_dtype, TRITONSERVER_ERROR_INVALID_ARG,std::string("expected input and output datatype to match, got ") +input_dtype + " and " + output_dtype);datatype_ = ModelConfigDataTypeToTritonServerDataType(input_dtype);// Input and output must have same shape. Reshape is not supported// on either input or output so flag an error is the model// configuration uses it.triton::common::TritonJson::Value reshape;RETURN_ERROR_IF_TRUE(input.Find("reshape", &reshape), TRITONSERVER_ERROR_UNSUPPORTED,std::string("reshape not supported for input tensor"));RETURN_ERROR_IF_TRUE(output.Find("reshape", &reshape), TRITONSERVER_ERROR_UNSUPPORTED,std::string("reshape not supported for output tensor"));std::vector<int64_t> input_shape, output_shape;RETURN_IF_ERROR(backend::ParseShape(input, "dims", &input_shape));RETURN_IF_ERROR(backend::ParseShape(output, "dims", &output_shape));RETURN_ERROR_IF_FALSE(input_shape == output_shape, TRITONSERVER_ERROR_INVALID_ARG,std::string("expected input and output shape to match, got ") +backend::ShapeToString(input_shape) + " and " +backend::ShapeToString(output_shape));nb_shape_ = input_shape;return nullptr; // success
}extern "C" {// Triton calls TRITONBACKEND_ModelInitialize when a model is loaded
// to allow the backend to create any state associated with the model,
// and to also examine the model configuration to determine if the
// configuration is suitable for the backend. Any errors reported by
// this function will prevent the model from loading.
//
TRITONSERVER_Error*
TRITONBACKEND_ModelInitialize(TRITONBACKEND_Model* model)
{// Create a ModelState object and associate it with the// TRITONBACKEND_Model. If anything goes wrong with initialization// of the model state then an error is returned and Triton will fail// to load the model.ModelState* model_state;RETURN_IF_ERROR(ModelState::Create(model, &model_state));RETURN_IF_ERROR(TRITONBACKEND_ModelSetState(model, reinterpret_cast<void*>(model_state)));LOG_MESSAGE(TRITONSERVER_LOG_INFO,"============TRITONBACKEND_ModelInitialize============");return nullptr; // success
}// Triton calls TRITONBACKEND_ModelFinalize when a model is no longer
// needed. The backend should cleanup any state associated with the
// model. This function will not be called until all model instances
// of the model have been finalized.
//
TRITONSERVER_Error*
TRITONBACKEND_ModelFinalize(TRITONBACKEND_Model* model)
{void* vstate;RETURN_IF_ERROR(TRITONBACKEND_ModelState(model, &vstate));ModelState* model_state = reinterpret_cast<ModelState*>(vstate);delete model_state;LOG_MESSAGE(TRITONSERVER_LOG_INFO,"============TRITONBACKEND_ModelFinalize============");return nullptr; // success
}} // extern "C"///
// ModelInstanceState
//
// State associated with a model instance. An object of this class is
// created and associated with each
// TRITONBACKEND_ModelInstance. ModelInstanceState is derived from
// BackendModelInstance class provided in the backend utilities that
// provides many common functions.
//
class ModelInstanceState : public BackendModelInstance {public:static TRITONSERVER_Error* Create(ModelState* model_state,TRITONBACKEND_ModelInstance* triton_model_instance,ModelInstanceState** state);virtual ~ModelInstanceState() = default;// Get the state of the model that corresponds to this instance.ModelState* StateForModel() const { return model_state_; }private:ModelInstanceState(ModelState* model_state,TRITONBACKEND_ModelInstance* triton_model_instance): BackendModelInstance(model_state, triton_model_instance),model_state_(model_state){}ModelState* model_state_;
};TRITONSERVER_Error*
ModelInstanceState::Create(ModelState* model_state, TRITONBACKEND_ModelInstance* triton_model_instance,ModelInstanceState** state)
{try {*state = new ModelInstanceState(model_state, triton_model_instance);}catch (const BackendModelInstanceException& ex) {RETURN_ERROR_IF_TRUE(ex.err_ == nullptr, TRITONSERVER_ERROR_INTERNAL,std::string("unexpected nullptr in BackendModelInstanceException"));RETURN_IF_ERROR(ex.err_);}return nullptr; // success
}extern "C" {// Triton calls TRITONBACKEND_ModelInstanceInitialize when a model
// instance is created to allow the backend to initialize any state
// associated with the instance.
//
TRITONSERVER_Error*
TRITONBACKEND_ModelInstanceInitialize(TRITONBACKEND_ModelInstance* instance)
{// Get the model state associated with this instance's model.TRITONBACKEND_Model* model;RETURN_IF_ERROR(TRITONBACKEND_ModelInstanceModel(instance, &model));void* vmodelstate;RETURN_IF_ERROR(TRITONBACKEND_ModelState(model, &vmodelstate));ModelState* model_state = reinterpret_cast<ModelState*>(vmodelstate);// Create a ModelInstanceState object and associate it with the// TRITONBACKEND_ModelInstance.ModelInstanceState* instance_state;RETURN_IF_ERROR(ModelInstanceState::Create(model_state, instance, &instance_state));RETURN_IF_ERROR(TRITONBACKEND_ModelInstanceSetState(instance, reinterpret_cast<void*>(instance_state)));LOG_MESSAGE(TRITONSERVER_LOG_INFO,"============TRITONBACKEND_ModelInstanceInitialize============");return nullptr; // success
}// Triton calls TRITONBACKEND_ModelInstanceFinalize when a model
// instance is no longer needed. The backend should cleanup any state
// associated with the model instance.
//
TRITONSERVER_Error*
TRITONBACKEND_ModelInstanceFinalize(TRITONBACKEND_ModelInstance* instance)
{void* vstate;RETURN_IF_ERROR(TRITONBACKEND_ModelInstanceState(instance, &vstate));ModelInstanceState* instance_state =reinterpret_cast<ModelInstanceState*>(vstate);delete instance_state;LOG_MESSAGE(TRITONSERVER_LOG_INFO,"============TRITONBACKEND_ModelInstanceFinalize============");return nullptr; // success
}} // extern "C"/extern "C" {// When Triton calls TRITONBACKEND_ModelInstanceExecute it is required
// that a backend create a response for each request in the batch. A
// response may be the output tensors required for that request or may
// be an error that is returned in the response.
//
TRITONSERVER_Error*
TRITONBACKEND_ModelInstanceExecute(TRITONBACKEND_ModelInstance* instance, TRITONBACKEND_Request** requests,const uint32_t request_count)
{// Collect various timestamps during the execution of this batch or// requests. These values are reported below before returning from// the function.LOG_MESSAGE(TRITONSERVER_LOG_INFO,"============TRITONBACKEND_ModelInstanceExecute============");uint64_t exec_start_ns = 0;SET_TIMESTAMP(exec_start_ns);// Triton will not call this function simultaneously for the same// 'instance'. But since this backend could be used by multiple// instances from multiple models the implementation needs to handle// multiple calls to this function at the same time (with different// 'instance' objects). Best practice for a high-performance// implementation is to avoid introducing mutex/lock and instead use// only function-local and model-instance-specific state.ModelInstanceState* instance_state;RETURN_IF_ERROR(TRITONBACKEND_ModelInstanceState(instance, reinterpret_cast<void**>(&instance_state)));ModelState* model_state = instance_state->StateForModel();// 'responses' is initialized as a parallel array to 'requests',// with one TRITONBACKEND_Response object for each// TRITONBACKEND_Request object. If something goes wrong while// creating these response objects, the backend simply returns an// error from TRITONBACKEND_ModelInstanceExecute, indicating to// Triton that this backend did not create or send any responses and// so it is up to Triton to create and send an appropriate error// response for each request. RETURN_IF_ERROR is one of several// useful macros for error handling that can be found in// backend_common.h.std::vector<TRITONBACKEND_Response*> responses;responses.reserve(request_count);for (uint32_t r = 0; r < request_count; ++r) {TRITONBACKEND_Request* request = requests[r];TRITONBACKEND_Response* response;RETURN_IF_ERROR(TRITONBACKEND_ResponseNew(&response, request));responses.push_back(response);}// At this point, the backend takes ownership of 'requests', which// means that it is responsible for sending a response for every// request. From here, even if something goes wrong in processing,// the backend must return 'nullptr' from this function to indicate// success. Any errors and failures must be communicated via the// response objects.//// To simplify error handling, the backend utilities manage// 'responses' in a specific way and it is recommended that backends// follow this same pattern. When an error is detected in the// processing of a request, an appropriate error response is sent// and the corresponding TRITONBACKEND_Response object within// 'responses' is set to nullptr to indicate that the// request/response has already been handled and no further processing// should be performed for that request. Even if all responses fail,// the backend still allows execution to flow to the end of the// function so that statistics are correctly reported by the calls// to TRITONBACKEND_ModelInstanceReportStatistics and// TRITONBACKEND_ModelInstanceReportBatchStatistics.// RESPOND_AND_SET_NULL_IF_ERROR, and// RESPOND_ALL_AND_SET_NULL_IF_ERROR are macros from// backend_common.h that assist in this management of response// objects.// The backend could iterate over the 'requests' and process each// one separately. But for performance reasons it is usually// preferred to create batched input tensors that are processed// simultaneously. This is especially true for devices like GPUs// that are capable of exploiting the large amount parallelism// exposed by larger data sets.//// The backend utilities provide a "collector" to facilitate this// batching process. The 'collector's ProcessTensor function will// combine a tensor's value from each request in the batch into a// single contiguous buffer. The buffer can be provided by the// backend or 'collector' can create and manage it. In this backend,// there is not a specific buffer into which the batch should be// created, so use ProcessTensor arguments that cause collector to// manage it. ProcessTensor does NOT support TRITONSERVER_TYPE_BYTES// data type.BackendInputCollector collector(requests, request_count, &responses, model_state->TritonMemoryManager(),false /* pinned_enabled */, nullptr /* stream*/);// To instruct ProcessTensor to "gather" the entire batch of input// tensors into a single contiguous buffer in CPU memory, set the// "allowed input types" to be the CPU ones (see tritonserver.h in// the triton-inference-server/core repo for allowed memory types).std::vector<std::pair<TRITONSERVER_MemoryType, int64_t>> allowed_input_types ={{TRITONSERVER_MEMORY_CPU_PINNED, 0}, {TRITONSERVER_MEMORY_CPU, 0}};const char* input_buffer;size_t input_buffer_byte_size;TRITONSERVER_MemoryType input_buffer_memory_type;int64_t input_buffer_memory_type_id;RESPOND_ALL_AND_SET_NULL_IF_ERROR(responses, request_count,collector.ProcessTensor(model_state->InputTensorName().c_str(), nullptr /* existing_buffer */,0 /* existing_buffer_byte_size */, allowed_input_types, &input_buffer,&input_buffer_byte_size, &input_buffer_memory_type,&input_buffer_memory_type_id));// Finalize the collector. If 'true' is returned, 'input_buffer'// will not be valid until the backend synchronizes the CUDA// stream or event that was used when creating the collector. For// this backend, GPU is not supported and so no CUDA sync should// be needed; so if 'true' is returned simply log an error.const bool need_cuda_input_sync = collector.Finalize();if (need_cuda_input_sync) {LOG_MESSAGE(TRITONSERVER_LOG_ERROR,"'recommended' backend: unexpected CUDA sync required by collector");}// 'input_buffer' contains the batched input tensor. The backend can// implement whatever logic is necessary to produce the output// tensor. This backend simply logs the input tensor value and then// returns the input tensor value in the output tensor so no actual// computation is needed.uint64_t compute_start_ns = 0;SET_TIMESTAMP(compute_start_ns);LOG_MESSAGE(TRITONSERVER_LOG_INFO,(std::string("model ") + model_state->Name() + ": requests in batch " +std::to_string(request_count)).c_str());std::string tstr;IGNORE_ERROR(BufferAsTypedString(tstr, input_buffer, input_buffer_byte_size,model_state->TensorDataType()));LOG_MESSAGE(TRITONSERVER_LOG_INFO,(std::string("batched " + model_state->InputTensorName() + " value: ") +tstr).c_str());const char* output_buffer = input_buffer;TRITONSERVER_MemoryType output_buffer_memory_type = input_buffer_memory_type;int64_t output_buffer_memory_type_id = input_buffer_memory_type_id;uint64_t compute_end_ns = 0;SET_TIMESTAMP(compute_end_ns);bool supports_first_dim_batching;RESPOND_ALL_AND_SET_NULL_IF_ERROR(responses, request_count,model_state->SupportsFirstDimBatching(&supports_first_dim_batching));std::vector<int64_t> tensor_shape;RESPOND_ALL_AND_SET_NULL_IF_ERROR(responses, request_count, model_state->TensorShape(tensor_shape));// Because the output tensor values are concatenated into a single// contiguous 'output_buffer', the backend must "scatter" them out// to the individual response output tensors. The backend utilities// provide a "responder" to facilitate this scattering process.// BackendOutputResponder does NOT support TRITONSERVER_TYPE_BYTES// data type.// The 'responders's ProcessTensor function will copy the portion of// 'output_buffer' corresponding to each request's output into the// response for that request.BackendOutputResponder responder(requests, request_count, &responses, model_state->TritonMemoryManager(),supports_first_dim_batching, false /* pinned_enabled */,nullptr /* stream*/);responder.ProcessTensor(model_state->OutputTensorName().c_str(), model_state->TensorDataType(),tensor_shape, output_buffer, output_buffer_memory_type,output_buffer_memory_type_id);// Finalize the responder. If 'true' is returned, the output// tensors' data will not be valid until the backend synchronizes// the CUDA stream or event that was used when creating the// responder. For this backend, GPU is not supported and so no CUDA// sync should be needed; so if 'true' is returned simply log an// error.const bool need_cuda_output_sync = responder.Finalize();if (need_cuda_output_sync) {LOG_MESSAGE(TRITONSERVER_LOG_ERROR,"'recommended' backend: unexpected CUDA sync required by responder");}// Send all the responses that haven't already been sent because of// an earlier error.for (auto& response : responses) {if (response != nullptr) {LOG_IF_ERROR(TRITONBACKEND_ResponseSend(response, TRITONSERVER_RESPONSE_COMPLETE_FINAL, nullptr),"failed to send response");}}uint64_t exec_end_ns = 0;SET_TIMESTAMP(exec_end_ns);#ifdef TRITON_ENABLE_STATS// For batch statistics need to know the total batch size of the// requests. This is not necessarily just the number of requests,// because if the model supports batching then any request can be a// batched request itself.size_t total_batch_size = 0;if (!supports_first_dim_batching) {total_batch_size = request_count;} else {for (uint32_t r = 0; r < request_count; ++r) {auto& request = requests[r];TRITONBACKEND_Input* input = nullptr;LOG_IF_ERROR(TRITONBACKEND_RequestInputByIndex(request, 0 /* index */, &input),"failed getting request input");if (input != nullptr) {const int64_t* shape = nullptr;LOG_IF_ERROR(TRITONBACKEND_InputProperties(input, nullptr, nullptr, &shape, nullptr, nullptr, nullptr),"failed getting input properties");if (shape != nullptr) {total_batch_size += shape[0];}}}}
#else(void)exec_start_ns;(void)exec_end_ns;(void)compute_start_ns;(void)compute_end_ns;
#endif // TRITON_ENABLE_STATS// Report statistics for each request, and then release the request.for (uint32_t r = 0; r < request_count; ++r) {auto& request = requests[r];#ifdef TRITON_ENABLE_STATSLOG_IF_ERROR(TRITONBACKEND_ModelInstanceReportStatistics(instance_state->TritonModelInstance(), request,(responses[r] != nullptr) /* success */, exec_start_ns,compute_start_ns, compute_end_ns, exec_end_ns),"failed reporting request statistics");
#endif // TRITON_ENABLE_STATSLOG_IF_ERROR(TRITONBACKEND_RequestRelease(request, TRITONSERVER_REQUEST_RELEASE_ALL),"failed releasing request");}#ifdef TRITON_ENABLE_STATS// Report batch statistics.LOG_IF_ERROR(TRITONBACKEND_ModelInstanceReportBatchStatistics(instance_state->TritonModelInstance(), total_batch_size,exec_start_ns, compute_start_ns, compute_end_ns, exec_end_ns),"failed reporting batch request statistics");
#endif // TRITON_ENABLE_STATSreturn nullptr; // success
}} // extern "C"}}} // namespace triton::backend::recommended
之后执行编译:
mkdir build
cmake -DCMAKE_INSTALL_PREFIX:PATH=`pwd`/install ..
make install
编译完成后,会生成动态库:
2.2 自定义backend的serve
模型的serve除了需要模型本身之外,还需要相应的配置文件,例如:
backend: "liupeng"
max_batch_size: 8
dynamic_batching {max_queue_delay_microseconds: 5000000
}
input [{name: "IN0"data_type: TYPE_INT32dims: [ 4 ]}
]
output [{name: "OUT0"data_type: TYPE_INT32dims: [ 4 ]}
]
instance_group [{kind: KIND_CPU}
]
注意,backend的名称是有要求的,其名称必须为:libtriton_backendname.so红色部分。
1、配置文件准备完成后,之后按照如下目录形式放入到model_repository路径下:
2、启动triton镜像,并将 model_repository路径映射到容器中,命令行:
docker run --rm -p8000:8000 -p8001:8001 -p8002:8002 -it -v /root/tritonserver/server/docs/examples/model_repository:/models nvcr.io/nvidia/tritonserver:23.12-py3
3、启动triton:
tritonserver --model-repository=/models
在triton启动时,会执行 TRITONBACKEND_Initialize函数,有如下打印:
3、python自定义backend
3.1 python自定义backend代码
python自定义backend相比c++简单很多,只要实现三个api即可:
def initialize(self, args)
def execute(self, requests)
def finalize(self)
示例代码位于:
https://gitee.com/bd-super-sugar/python_backend/blob/main/examples/add_sub/model.py
代码如下:
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.import json# triton_python_backend_utils is available in every Triton Python model. You
# need to use this module to create inference requests and responses. It also
# contains some utility functions for extracting information from model_config
# and converting Triton input/output types to numpy types.
import triton_python_backend_utils as pb_utilsclass TritonPythonModel:"""Your Python model must use the same class name. Every Python modelthat is created must have "TritonPythonModel" as the class name."""def initialize(self, args):"""`initialize` is called only once when the model is being loaded.Implementing `initialize` function is optional. This function allowsthe model to initialize any state associated with this model.Parameters----------args : dictBoth keys and values are strings. The dictionary keys and values are:* model_config: A JSON string containing the model configuration* model_instance_kind: A string containing model instance kind* model_instance_device_id: A string containing model instance device ID* model_repository: Model repository path* model_version: Model version* model_name: Model name"""# You must parse model_config. JSON string is not parsed hereself.model_config = model_config = json.loads(args["model_config"])# Get OUTPUT0 configurationoutput0_config = pb_utils.get_output_config_by_name(model_config, "OUTPUT0")# Get OUTPUT1 configurationoutput1_config = pb_utils.get_output_config_by_name(model_config, "OUTPUT1")# Convert Triton types to numpy typesself.output0_dtype = pb_utils.triton_string_to_numpy(output0_config["data_type"])self.output1_dtype = pb_utils.triton_string_to_numpy(output1_config["data_type"])def execute(self, requests):"""`execute` MUST be implemented in every Python model. `execute`function receives a list of pb_utils.InferenceRequest as the onlyargument. This function is called when an inference request is madefor this model. Depending on the batching configuration (e.g. DynamicBatching) used, `requests` may contain multiple requests. EveryPython model, must create one pb_utils.InferenceResponse for everypb_utils.InferenceRequest in `requests`. If there is an error, you canset the error argument when creating a pb_utils.InferenceResponseParameters----------requests : listA list of pb_utils.InferenceRequestReturns-------listA list of pb_utils.InferenceResponse. The length of this list mustbe the same as `requests`"""output0_dtype = self.output0_dtypeoutput1_dtype = self.output1_dtyperesponses = []# Every Python backend must iterate over everyone of the requests# and create a pb_utils.InferenceResponse for each of them.for request in requests:# Get INPUT0in_0 = pb_utils.get_input_tensor_by_name(request, "INPUT0")# Get INPUT1in_1 = pb_utils.get_input_tensor_by_name(request, "INPUT1")out_0, out_1 = (in_0.as_numpy() + in_1.as_numpy(),in_0.as_numpy() - in_1.as_numpy(),)# Create output tensors. You need pb_utils.Tensor# objects to create pb_utils.InferenceResponse.out_tensor_0 = pb_utils.Tensor("OUTPUT0", out_0.astype(output0_dtype))out_tensor_1 = pb_utils.Tensor("OUTPUT1", out_1.astype(output1_dtype))# Create InferenceResponse. You can set an error here in case# there was a problem with handling this inference request.# Below is an example of how you can set errors in inference# response:## pb_utils.InferenceResponse(# output_tensors=..., TritonError("An error occurred"))inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor_0, out_tensor_1])responses.append(inference_response)# You should return a list of pb_utils.InferenceResponse. Length# of this list must match the length of `requests` list.return responsesdef finalize(self):"""`finalize` is called only once when the model is being unloaded.Implementing `finalize` function is OPTIONAL. This function allowsthe model to perform any necessary clean ups before exit."""print("Cleaning up...")
对应的配置config.pbtxt如下:
name: "liupeng_python"
backend: "python"input [{name: "INPUT0"data_type: TYPE_FP32dims: [ 4 ]}
]
input [{name: "INPUT1"data_type: TYPE_FP32dims: [ 4 ]}
]
output [{name: "OUTPUT0"data_type: TYPE_FP32dims: [ 4 ]}
]
output [{name: "OUTPUT1"data_type: TYPE_FP32dims: [ 4 ]}
]instance_group [{ kind: KIND_CPU }]
3.2 模型的serve
模型目录组织结构如下:
启动后,模型加载情况:
到此,python自定义backend已经加载成功。
4、执行推理
以python自定义backend为例,client端代码:
# Copyright 2020-2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.import sysimport numpy as np
import tritonclient.http as httpclient
from tritonclient.utils import *model_name = "liupeng_python"
shape = [4]with httpclient.InferenceServerClient("localhost:8000") as client:input0_data = np.random.rand(*shape).astype(np.float32)input1_data = np.random.rand(*shape).astype(np.float32)inputs = [httpclient.InferInput("INPUT0", input0_data.shape, np_to_triton_dtype(input0_data.dtype)),httpclient.InferInput("INPUT1", input1_data.shape, np_to_triton_dtype(input1_data.dtype)),]inputs[0].set_data_from_numpy(input0_data)inputs[1].set_data_from_numpy(input1_data)outputs = [httpclient.InferRequestedOutput("OUTPUT0"),httpclient.InferRequestedOutput("OUTPUT1"),]response = client.infer(model_name, inputs, request_id=str(1), outputs=outputs)result = response.get_response()output0_data = response.as_numpy("OUTPUT0")output1_data = response.as_numpy("OUTPUT1")print("INPUT0 ({}) + INPUT1 ({}) = OUTPUT0 ({})".format(input0_data, input1_data, output0_data))print("INPUT0 ({}) - INPUT1 ({}) = OUTPUT1 ({})".format(input0_data, input1_data, output1_data))if not np.allclose(input0_data + input1_data, output0_data):print("add_sub example error: incorrect sum")sys.exit(1)if not np.allclose(input0_data - input1_data, output1_data):print("add_sub example error: incorrect difference")sys.exit(1)print("PASS: liupeng_python")sys.exit(0)
安装好triton client依赖库后,执行该脚本,即可请求到【liupeng_python】模型上,简单期间,可以在triton的client镜像中运行。
5、欢迎关注
欢迎关注本人公众号:
这篇关于tritonserver学习之六:自定义c++、python custom backend实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!