富集分析的原理与实现

2024-01-30 12:20
文章标签 分析 实现 原理 富集

本文主要是介绍富集分析的原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一般做完差异分析都会做这一步,目的是找到差异基因富集到的通路,进而与生物学意义联系起来。具体的统计方法很简单,这篇笔记里面的代码可以从零搭建一个富集分析工具。

后台回复20211007获取本文的测试数据和代码,以及(单细胞)转录组分析中可能用到的GO KEGG富集分析代码(这部分本文不演示)。

关于Gene Ontology (GO), KEGG这些背景就不讲了,网上很多资料。

将富集分析中的问题抽象出来,其实就是下图的“摸球”问题。

蓝色方框中的球是所有的基因【共N个】,在探究某个特定通路P时,通路里面涉及到的基因用红色表示【共M个】。绿色圆圈是一次摸球事件,用来表示做了一次差异分析得到的基因【共n个】,这些基因中,有属于通路P的(红色球)【共k个】,有不属于的(黑色球)。

用摸球问题中的语言再描述一次:袋子中共有黑球和红球N个,其中红球M个。某次抽样中,一共摸球n个,其中红球k个,问在这次摸球中,红球的占比是否显著高于袋子中红球的占比? (以前学摸球问题/超几何分布的时候,可能只求概率,没有进一步到这个统计检验)

回答这个问题,需要求出问题中这个事件的概率以及更极端事件的概率之和,也就是p值,小于0.05或者0.01就能认为是显著了。

1. 一个通路,计算p值

接下来以一个GO term (GO_extracellular_matrix_organization)为例,计算p值。 用的通路基因集是小鼠 GO BP的基因集,差异基因集是单细胞转录组分析中一个cluster的高表达基因

library(tidyverse)
library(clusterProfiler)gmt.df=read.gmt("Mm.c5.bp.v7.1.SYMBOL.gmt")
deg=read.table("test_deg.txt",header = T,sep = "\t",stringsAsFactors = F)
deg=deg[deg$gene %in% gmt.df$gene,]

这种情况下,前面说的几个参数的值如下:

  • 全部球的个数/全部基因数: N=length(unique(gmt.df$gene))
  • 全部红球的个数/通路基因集的基因数: one.set=gmt.df[ gmt.df$term %in% c("GO_extracellular_matrix_organization") ,] M=length(one.set$gene)
  • 摸球数/差异基因数: n=length(deg$gene)
  • 摸球中红球的个数/差异基因中属于这个通路的基因数: k=sum(deg$gene %in% one.set$gene)

N M n k的值分别为: 23210, 271, 47, 6

求p值之前,先看一下满足N M n这三个参数的超几何分布,在不同的k值之下的概率:

df1=data.frame(x=1:47,y=dhyper(x=1:47, M, N-M, n))
df1%>%ggplot(aes(x,y))+geom_point()+geom_line()+geom_vline(xintercept=k,color="red",linetype=5)+  #这里k等于6,其作为阈值theme_bw()+theme(panel.grid = element_blank())

dhyper()用来求概率,四个参数分别是:摸球中红球个数的向量,袋中红球数,袋中黑球数,摸球数

我们要计算的就是红线以及右边那些红球数对应的概率之和,如下:

> phyper(k-1,M, N-M, n, lower.tail=FALSE)
[1] 1.722659e-05

lower.tail=FALSE,计算的是P[X > x],即大于第一个参数的概率之和。上面的代码第一个参数写的是k-1,因为我们需要求k以及k右边的概率之和。

以上是对一个通路求p值


2. 多个通路,依次计算p值

如果是多个通路,需要循环操作,依次对每个通路进行富集分析。 下面的演示用到的差异基因集和GO BP基因集同上

分析哪些pathway?要满足两个条件:

  • 通路里面基因的数量满足一定要求
  • 至少和deg有基因交集

下面的代码就是对通路做过滤的

bp.stat=as.data.frame(table(gmt.df$term))
colnames(bp.stat)[1]="pathway"
bp.stat=bp.stat%>%filter(Freq >= 2 & Freq <= 2000)tmp.df=gmt.df
tmp.df$TF=tmp.df$gene %in% deg$gene
tmp.stat=as.data.frame(tmp.df %>% dplyr::group_by(term) %>% dplyr::summarize(counts=sum(TF)))
tmp.stat=tmp.stat%>%filter(counts > 0)
keep.pw=sort(intersect(bp.stat$pathway,tmp.stat$term))

下面就是循环求p值了

N=length(unique(gmt.df$gene))
n=length(deg$gene)
term=c()
pvalue=c()for (i in keep.pw) {one.set=gmt.df[ gmt.df$term %in% i ,]M=length(one.set$gene)k=sum(deg$gene %in% one.set$gene)one.pvalue=phyper(k-1,M, N-M, n, lower.tail=FALSE)term=append(term,i)pvalue=append(pvalue,one.pvalue)
}my_go_res=data.frame(term=term,pvalue=pvalue)
my_go_res=my_go_res%>%arrange(pvalue)

到这会儿还没有结束,还差一个FDR


3. 计算矫正p值

FDR, False Discovery Rates。为什么要控制FDR,降低假阳性。 这里用到的是The Benjamini-Hochberg method

The Benjamini-Hochberg method

假设我们对10个通路做了富集分析,我们会先得到10个p值:

  1. 将这10个p值从小到大排序
  2. 从1到10给这些p值排序
  3. 最大的FDR adjusted p value(第10位)等于原来最大的那个p值
  4. 第9位的FDR adjusted p value等于这两个值中的较小值: ①前一位矫正的p值; ②当前未矫正的p值 * (p值总个数/当前位数)
  5. 重复第4步,直到第1位

代码如下:

fdr=c()
for (i in dim(my_go_res)[1]:1) {if (i==dim(my_go_res)[1]) {tmpfdr=my_go_res$pvalue[i]}else{tmpfdr=min(tmpfdr,my_go_res$pvalue[i] * (dim(my_go_res)[1] / i))}fdr=append(fdr,tmpfdr)
}
my_go_res$p.adj=rev(fdr)

到这儿富集分析的完整流程才算结束


4. 轮子有现成的

当然,这个算法已经非常常见了,clusterProfiler的enricher()就能够自定义基因集做富集分析。使用如下:

deg_gmt=clusterProfiler::enricher(deg$gene,TERM2GENE = gmt.df,minGSSize = 2,maxGSSize = 2000)
go_res=deg_gmt@result

和上面的结果是一模一样的。

今天的内容就到这里,后台回复20211007获取本文的测试数据和代码,以及(单细胞)转录组分析中可能用到的GO KEGG富集分析代码(这部分本文不演示)。

ref

  • 超几何分布检验(hypergeometric test):https://blog.csdn.net/linkequa/article/details/86491665
  • 富集分析的p值是怎么算出来的?:公众号【YuLabSMU】
  • R tips 富集分析及其p值在R中的计算:公众号【生信菜鸟团】
  • False Discovery Rates, FDR, clearly explained:https://www.youtube.com/watch?v=K8LQSvtjcEo&t=909s&ab_channel=StatQuestwithJoshStarmer

    因水平有限,有错误的地方,欢迎批评指正!

这篇关于富集分析的原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/660221

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import