Android MTE技术详解

2024-01-30 10:44
文章标签 android 技术 详解 mte

本文主要是介绍Android MTE技术详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.MTE概念

        MTE(内存标记扩展)是ARM v8.5-A新增的一项缓解内存安全的机制。在Android Linux现有的安全机制中,类似的机制有ASAN、HWSAN。但两者因为性能开销代价昂,不适用于广泛部署(仅调试使用)。MTE当前带来了一种高性能、可扩展的硬件解决方案,可降低以不安全语言编写的代码中可能存在的内存安全违规风险。

注:MTE不仅可用在研发自测、内存问题调试,也可以用于Fuzz。

2.MTE支持条件

ARM解释: v8.5及以上

Qcom平台解释:ARM v9(MSM8450)以上

Android解释:Android对MTE的支持将在2021年/2022年初发布带有MTE的芯片时完成。截至于2023年底,最新的旗舰设备(Pixel、OPPO)开发者选项中已具备MTE功能。

3.MTE的开关

        内核层CONFIG_ARM64_MTE=y时开启,此Kconfig由平台根据环境自行控制,无需工程师手动开关。依赖情况如下:

1687config ARM64_MTE1688 bool "Memory Tagging Extension support"1689 default y1690 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI1691 depends on AS_HAS_ARMV8_51692 # Required for tag checking in the uaccess routines1693 depends on ARM64_PAN1694 depends on AS_HAS_LSE_ATOMICS1695 select ARCH_USES_HIGH_VMA_FLAGS1696 help

        Google Play中也提供了APP(Sanitizer Test APP[外网,需要科学上网])可用于测试MTE,例如:

4.MTE检测目标

MTE认为内存安全违规主要分2种:空间安全、时间安全。

  • 空间安全:

对象在真实边界之外被访问,例如溢出、越界等。可被利用来改变函数指针、保存寄存器等目标地址。

  • 时间安全:

在对象引用的内存释放、过期后使用。例如UAF等,攻击者可以放置一个新的恶意对象来代替预期目标。

下图是两类内存违规的代码表视图:

5.MTE的检测原理

  • 总体思路

        MTE实现了对内存的锁和密钥的验证关系,通过在指针上增加密钥,在内存中加入锁。在指针访问内存时,密钥与锁进行验证。如果匹配,则允许内存访问;否则访问会被记录、拦截。通过这种方式来检测、捕捉内存安全问题。整体逻辑如下图:

  • 技术实现

        ARM64 架构使用64位指针来寻址内存。其中通常有48~52位被硬件实际使用(如果由开启large-address-space,则是52位)。所以理论上有12-16位是预留的。ARM架构一直有“TOP BYTE IGNORE”高字节忽略的功能,允许软件在虚拟地址的最高字节中存储任意数据,但直到MTE前,这些位依然是没有使用。

        MTE允许在虚拟地址的59-56位(即最上层字节的低4位)存储一个key作为密钥。也会将这个密钥与一个或多个16字节的内存范围关联(单独存储作为“锁”)。当一个指针简介访问此内存区域时,存储在指针中的密钥会与指针引用内存的关联密钥进行校验。

  • 密钥来源

        密钥可以由应用程序管理(keymaster)产生,也可以由CPU随机生成。

6.MTE的实际效果

        以2020年修复libjpeg-trubo库漏洞CVE-2020-13790为例。此漏洞是JPEG图像编解码器,在加载格式错误的img文件时导致的堆缓冲区溢出。以下是MTE开启时,漏洞触发的情景:

可以看到,在漏洞复现时,MTE轻松的捕获到,进程会因为分段错误导致中止。故障的存储会通过logcat打印。从图中可以看到:

  • 奔溃的原因:MTE
  • 崩溃的类型:Buffer Overflow
  • 堆的大小以及溢出的大小:104 bytes right of a 16151-byte
  • 问题地址:pc指针(00000056d2240ddc)
  • 进程id:pid=187,tid=187
  • CPU寄存器信息
  • 堆栈的回溯信息

通过addr2line解析pc指针,可以找到问题出现的地址:

7.MTE的处理措施

        当PROT_MTE(相关特性:页表允许MTE分配标签)已开启,并且检测出异常时,有三种不同的选项:

  • Ignore模式(PR_MTE_TCF_NONE):这是默认模式。CPU和内核将忽略MTE检测错误;如果未设置,也默认此选项。
  • 同步模式(PR_MTE_TCF_SYNC):内核引发SIGSEGV同步,并且引发SEGV_MTESERR和si_code=fauly-address。并且内存访问会被拦截,如果SIGSEGV被阻塞或忽略,则包含的进程将通过coredump中止。
  • 异步模式(PR_MTE_TCF_ASYNC):在一个或多个线程检测错误后内核引发SIGSEGV,并设置SEGV_MTAERR和si_code=0;

8.MTE的性能开销

以上是官方给出的性能开销结论:

同步模式:能够识别精确指令和地址,但对性能开销较大;

异步模式:成本更低,再测试工作负载和基准测试中,性能开销估计为:1%~2%,但异步检测提供是失败信息可能不太准确,但它可以提供一些缓解错误信息并用于分析,以便缩小排查范围

9.上手实效

        据2023年8月,Google Project Zero发布的一篇博文《Fitst handset with MTE on market》呈现,博主在Pixel 8上开启了MTE,正常日常使用中未发现任何异常,也没有感受到性能受到影响。

        作为世界顶级安全团队的Zero,自然也编写了一个具备OOB的Poc进行测试,源码如下:

extern "C" JNIEXPORT jstring JNICALLJava_com_example_mtetestapplication_MainActivity_stringFromJNI(JNIEnv* env,jobject /* this */) {char* ptr = strdup("test string");free(ptr);// Use-after-free when ptr is accessed below.return env->NewStringUTF(ptr);}

测试的结果如下(视频请参考原始地址),以下仅为logcat打印,可以明显看到崩溃原因是testapplication程序发生了UAF。

EBUG   : *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***DEBUG   : Build fingerprint: 'google/shiba/shiba:14/UD1A.230803.041/10808477:user/release-keys'DEBUG   : Revision: 'MP1.0'DEBUG   : ABI: 'arm64'DEBUG   : Timestamp: 2023-10-24 16:56:32.092532886+0200DEBUG   : Process uptime: 2sDEBUG   : Cmdline: com.example.mtetestapplicationDEBUG   : pid: 24147, tid: 24147, name: testapplication  >>> com.example.mtetestapplication <<<DEBUG   : uid: 10292DEBUG   : tagged_addr_ctrl: 000000000007fff3 (PR_TAGGED_ADDR_ENABLE, PR_MTE_TCF_SYNC, mask 0xfffe)DEBUG   : pac_enabled_keys: 000000000000000f (PR_PAC_APIAKEY, PR_PAC_APIBKEY, PR_PAC_APDAKEY, PR_PAC_APDBKEY)DEBUG   : signal 11 (SIGSEGV), code 9 (SEGV_MTESERR), fault addr 0x0b000072afa9f790DEBUG   :     x0  0000000000000001  x1  0000007fe384c2e0  x2  0000000000000075  x3  00000072aae969acDEBUG   :     x4  0000007fe384c308  x5  0000000000000004  x6  7274732074736574  x7  00676e6972747320DEBUG   :     x8  0000000000000020  x9  00000072ab1867e0  x10 000000000000050c  x11 00000072aaed0af4DEBUG   :     x12 00000072aaed0ca8  x13 31106e3dee7fb177  x14 ffffffffffffffff  x15 00000000ebad6a89DEBUG   :     x16 0000000000000001  x17 000000722ff047b8  x18 00000075740fe000  x19 0000007fe384c2d0DEBUG   :     x20 0000007fe384c308  x21 00000072aae969ac  x22 0000007fe384c2e0  x23 070000741fa897b0DEBUG   :     x24 0b000072afa9f790  x25 00000072aaed0c18  x26 0000000000000001  x27 000000754a5fae40DEBUG   :     x28 0000007573c00000  x29 0000007fe384c260DEBUG   :     lr  00000072ab35e7ac  sp  0000007fe384be30  pc  00000072ab1867ec  pst 0000000080001000DEBUG   : 98 total framesDEBUG   : backtrace:DEBUG   :       #00 pc 00000000003867ec  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::ScopedCheck::Check(art::ScopedObjectAccess&, bool, char const*, art::(anonymous namespace)::JniValueType*) (.__uniq.99033978352804627313491551960229047428)+1636) (BuildId: a5fcf27f4a71b07dff05c648ad58e3cd)DEBUG   :       #01 pc 000000000055e7a8  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::CheckJNI::NewStringUTF(_JNIEnv*, char const*) (.__uniq.99033978352804627313491551960229047428.llvm.6178811259984417487)+160) (BuildId: a5fcf27f4a71b07dff05c648ad58e3cd)DEBUG   :       #02 pc 00000000000017dc  /data/app/~~lgGoAt3gB6oojf3IWXi-KQ==/com.example.mtetestapplication-k4Yl4oMx9PEbfuvTEkjqFg==/base.apk!libmtetestapplication.so (offset 0x1000) (_JNIEnv::NewStringUTF(char const*)+36) (BuildId: f60a9970a8a46ff7949a5c8e41d0ece51e47d82c)...DEBUG   : Note: multiple potential causes for this crash were detected, listing them in decreasing order of likelihood.DEBUG   : Cause: [MTE]: Use After Free, 0 bytes into a 12-byte allocation at 0x72afa9f790DEBUG   : deallocated by thread 24147:DEBUG   :       #00 pc 000000000005e800  /apex/com.android.runtime/lib64/bionic/libc.so (scudo::Allocator<scudo::AndroidConfig, &(scudo_malloc_postinit)>::quarantineOrDeallocateChunk(scudo::Options, void*, scudo::Chunk::UnpackedHeader*, unsigned long)+496) (BuildId: a017f07431ff6692304a0cae225962fb)DEBUG   :       #01 pc 0000000000057ba4  /apex/com.android.runtime/lib64/bionic/libc.so (scudo::Allocator<scudo::AndroidConfig, &(scudo_malloc_postinit)>::deallocate(void*, scudo::Chunk::Origin, unsigned long, unsigned long)+212) (BuildId: a017f07431ff6692304a0cae225962fb)DEBUG   :       #02 pc 000000000000179c  /data/app/~~lgGoAt3gB6oojf3IWXi-KQ==/com.example.mtetestapplication-k4Yl4oMx9PEbfuvTEkjqFg==/base.apk!libmtetestapplication.so (offset 0x1000) (Java_com_example_mtetestapplication_MainActivity_stringFromJNI+40) (BuildId: f60a9970a8a46ff7949a5c8e41d0ece51e47d82c)

  10.结论

        从目前看来,启用MTE在性能、续航上的削弱并不明显,但在安全上的提升十分显著。是这些年来继CFI后最重要的商用安全特性(小编自己评的,如果不准确,请不要喷我)。许多0-click的攻击面都会涉及大量C/C++的安全问题。当前MTE也不是内存安全的最终答案,开启后能够提高安全性,但不意味着安全万无一失,

11.参考资料

参考资料链接
Kernel 5.15.0-rcl MTEhttps://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html
Tools and SoftwareTools and Software
ARM Developer MTELWN:Arm64的内存标记扩展功能!-CSDN博客
CSDN LWN:ARM64的内存标记扩展功能https://developer.arm.com/architectures/cpu-architecture/a-profile?&_ga=2.256687755.1292256680.1566735535-2019613222.1563850500#mte
ARM MTE白皮书https://www.wwwbuild.net/androidperf/74222.html

这篇关于Android MTE技术详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659981

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Python容器转换与共有函数举例详解

《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动