[SDOI2010]魔法猪学院[k短路][A*]

2024-01-30 02:38
文章标签 短路 学院 魔法 sdoi2010

本文主要是介绍[SDOI2010]魔法猪学院[k短路][A*],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练。经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的;元素与元素之间可以互相转换;能量守恒……。

能量守恒……iPig 今天就在进行一个麻烦的测验。iPig 在之前的学习中已经知道了很多种元素,并学会了可以转化这些元素的魔法,每种魔法需要消耗 iPig 一定的能量。作为 PKU 的顶尖学猪,让 iPig 用最少的能量完成从一种元素转换到另一种元素……等等,iPig 的魔法导猪可没这么笨!这一次,他给 iPig 带来了很多 1 号元素的样本,要求 iPig 使用学习过的魔法将它们一个个转化为 N 号元素,为了增加难度,要求每份样本的转换过程都不相同。这个看似困难的任务实际上对 iPig 并没有挑战性,因为,他有坚实的后盾……现在的你呀!

注意,两个元素之间的转化可能有多种魔法,转化是单向的。转化的过程中,可以转化到一个元素(包括开始元素)多次,但是一但转化到目标元素,则一份样本的转化过程结束。iPig 的总能量是有限的,所以最多能够转换的样本数一定是一个有限数。具体请参看样例。

输入格式:

第一行三个数 N、M、E 表示iPig知道的元素个数(元素从 1 到 N 编号)、iPig已经学会的魔法个数和iPig的总能量。

后跟 M 行每行三个数 si、ti、ei 表示 iPig 知道一种魔法,消耗 ei 的能量将元素 si 变换到元素 ti 。

输出格式:

一行一个数,表示最多可以完成的方式数。输入数据保证至少可以完成一种方式。

输入样例#1: 

4 6 14.9
1 2 1.5
2 1 1.5
1 3 3
2 3 1.5
3 4 1.5
1 4 1.5

输出样例#1: 

3

说明

有意义的转换方式共4种:

1->4,消耗能量 1.5

1->2->1->4,消耗能量 4.5

1->3->4,消耗能量 4.5

1->2->3->4,消耗能量 4.5

显然最多只能完成其中的3种转换方式(选第一种方式,后三种方式仍选两个),即最多可以转换3份样本。

如果将 E=14.9 改为 E=15,则可以完成以上全部方式,答案变为 4。


K短路模板

//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<cctype>
#include<queue>
#define N 1005
#define M 100005
using namespace std;
int first[N],next[M*2],to[M*2],w[M*2],tot;
int first2[N],next2[M*2],to2[M*2],w2[M*2],tot2;
int dis[N],vis[N],n,m,s,t,k;
struct Node{int pos,f,dis;bool operator < (Node a) const{return a.f+a.dis<f+dis;}
};
priority_queue<Node> q; 
int read(){int cnt=0;char ch=0;while(!isdigit(ch))ch=getchar();while(isdigit(ch))cnt=cnt*10+(ch-'0'),ch=getchar();return cnt;
}
void add(int x,int y,int z){next[++tot]=first[x],first[x]=tot,to[tot]=y,w[tot]=z;next2[++tot2]=first2[y],first2[y]=tot2,to2[tot2]=x,w2[tot2]=z;
}
void spfa(){queue<int> q1;q1.push(t);memset(dis,0x3fffffff,sizeof(dis));dis[t]=0;while(!q1.empty()){int x=q1.front();q1.pop(),vis[x]=0;for(int i=first2[x];i;i=next2[i]){int T=to2[i];if(dis[T]>dis[x]+w2[i]){dis[T]=dis[x]+w2[i];if(!vis[T]) q1.push(T),vis[T]=1;}}}
}
int astar(){if(dis[s]==0x3fffffff) return -1;int times[N];memset(times,0,sizeof(times));Node tmp,h;h.pos=s,h.f=0,h.dis=0;q.push(h);while(!q.empty()){Node x=q.top(); q.pop();times[x.pos]++;if(times[x.pos]==k&&x.pos==t) return x.dis;if(times[x.pos]>k) continue;for(int i=first[x.pos];i;i=next[i]){tmp.dis=x.dis+w[i];tmp.f=dis[to[i]];tmp.pos=to[i];q.push(tmp);}}return -1;
}
int main(){n=read(),m=read();for(int i=1;i<=m;i++){int x=read(),y=read(),z=read();add(x,y,z);}s=read(),t=read(),k=read();if(s==t) k++;spfa();cout<<astar();return 0;
} 

 

这篇关于[SDOI2010]魔法猪学院[k短路][A*]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/658860

相关文章

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin

poj 3255 次短路(第k短路) A* + spfa 或 dijkstra

题意: 给一张无向图,求从1到n的次短路。 解析: A* + spfa 或者 dijkstra。 详解见上一题:http://blog.csdn.net/u013508213/article/details/46400189 本题,spfa中,stack超时,queue的效率最高,priority_queue次之。 代码: #include <iostream>#i

poj 2449 第k短路 A* + spfa

poj 2449: 题意: 给一张有向图,求第k短路。 解析: A* + spfa。 一下转自:http://blog.csdn.net/mbxc816/article/details/7197228 “描述一下怎样用启发式搜索来解决K短路。 首先我们知道A*的基础公式:f(x)=g(x)+h(x);对h(x)进行设计,根据定义h(x)为当前的x点到目标点t所需要的实际距

poj 3259 最短路负环

John的农场里N块地,M条路连接两块地,W个虫洞,虫洞是一条单向路,会在你离开之前把你传送到目的地,就是当你过去的时候时间会倒退Ts。我们的任务是知道会不会在从某块地出发后又回来,看到了离开之前的自己。简化下,就是看图中有没有负权环。有的话就是可以,没有的话就是不可以了。 import java.io.BufferedReader;import java.io.InputStream;

POJ1724最短路

n个点,拥有总的价值money m条边(u,v,len ,cost),长度len,代价cost 求不超过money的代价条件下最短路。 public class Main {public static void main(String[] args) {new Task().solve();}}class Task {InputReader in = new InputReader

【AcWing】851. 求最短路

spfa算法其实是对贝尔曼福特算法做一个优化。 贝尔曼福特算法会遍历所有边来更新,但是每一次迭代的话我不一定每条边都会更新,SPFA是对这个做优化。 如果说dist[b]在当前这次迭代想变小的话,那么一定是dist[a]变小了,只有a变小了,a的后继(b)才会变小。 用宽搜来做优化,用一个队列,队列里边存的就是所有变小了的结点(队列里存的是待更新的点)。 基本思路就是我更新过谁,我再拿