【计算机组成原理】单周期CPU设计与实现-十条指令CPU

2024-01-29 19:40

本文主要是介绍【计算机组成原理】单周期CPU设计与实现-十条指令CPU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

单周期CPU设计与实现

合肥工业大学 计算机组成原理 实验五 单周期CPU设计与实现——十条指令CPU
自己在图上画出来指令的执行过程就会很清晰明了。首先确认有哪些模块,PC,指令存储器,CU,ACC,ALU,数据存储器,像多路选择器,符号位扩展模块都是根据指令后来添加的。再确认模块的输入信号和输出信号。当然,我也一下子无法把每个模块的输入信号和输出信号的数量确定好,这是一个增量过程,根据不同的指令变化而变化,但是大致还是能确定一些的。

然后,在纸上画出每条指令的执行过程。比如CLA指令,一条指令从指令存储器出来,操作码送入CU,剩余的部分根据指令需求送入不同模块。从CU出来的是ACC的写信号,也有alu的操作控制信号。下一个周期有效。ACC中的数据会输入到ALU中,从ALU中的计算的结果还要回写到ACC中。剩余的非访存指令皆是如此。

PC模块

module PC(clk,rst,stop,//停机信号jmp,//无条件跳转信号,为1跳转ban,//有条件条跳转信号,为1跳转newAddress,currentAddress);
input clk,rst,stop,jmp,ban;
input[11:0]newAddress;
output reg[11:0] currentAddress;reg state;
initial beginstate = 1; currentAddress = 0;
end
always@(posedge clk or negedge rst)beginif(stop)state = 0; if(!rst)currentAddress = 0;else beginif(state)beginif(!jmp && !ban)currentAddress = currentAddress + 1;else beginif(jmp)currentAddress = newAddress;if(ban)currentAddress = currentAddress+newAddress;endendend
end
endmodule

InsMemory模块

本来想通过条件跳转实现一个从1+2+3+…+n的程序的,但是由于判断条件在ACC,结果也放到ACC中,因此就无法实现。如果再写一个寄存器堆的话,就可以实现了。再写个寄存器堆工作量又要上升不少,所以采取很笨的方法,多写几条加法指令就行了。

module InsMemory(input[11:0] Addr,output reg[15:0] Ins);reg[15:0]unit[5'd31:0];//32个16位存储单元initial beginunit[0] = 16'b0110_0000_0000_0001;//取数,将地址为1的数据放到ACC中unit[1] = 16'b0000_0000_0000_0000;//清除ACC,unit[2] = 16'b0100_0000_0000_0001;//加法,将地址为1的数据与ACC相加unit[3] = 16'b0100_0000_0000_0010;//加法,将地址为2的数据与ACC相加unit[4] = 16'b0100_0000_0000_0011;//加法,将地址为3的数据与ACC相加unit[5] = 16'b0100_0000_0000_0100;//加法,将地址为4的数据与ACC相加unit[6] = 16'b0100_0000_0000_0101;//加法,将地址为5的数据与ACC相加unit[7] = 16'b0011_0000_0000_0101;//ACC循环左移unit[8] = 16'b0010_0000_0000_0110;//ACC算术右移unit[9] = 16'b0111_0000_0000_1101;//无条件跳转,直接跳转到第13条指令unit[10] = 16'b0100_0000_0000_0110;//加法,将地址为6的数据与ACC相加unit[11] = 16'b0100_0000_0000_0111;//加法,将地址为7的数据与ACC相加unit[12] = 16'b0100_0000_0000_1000;//加法,将地址为8的数据与ACC相加unit[13] = 16'b0001_0000_0000_1001;//ACC取反unit[14] = 16'b1000_0000_0000_0011;//有条件跳转,相对当前指令,向下跳转3条,也就是第17条指令unit[15] = 16'b0100_0000_0000_1001;//加法,将地址为9的数据与ACC相加unit[16] = 16'b0100_0000_0000_1010;//加法,将地址为10的数据与ACC相加unit[17] = 16'b0101_0000_0000_0000;//存数,将ACC存放到数据存储器地址为0的存储单元中unit[18] = 16'b1111_0000_0000_1001;//停机指令endalways@(*)beginIns = unit[Addr];end endmodule

ACC模块

module ACC(input clk,input AccRW,//读写信号input[15:0] indata,output[15:0] outdata);reg[15:0] acc;initial beginacc = 0;   endassign outdata = acc;always@(posedge clk)beginif(AccRW)acc = indata;end
endmodule

ALU模块

module ALU(input [3:0]alu_op,input[15:0]in1,in2,output reg flag,//当ACC的最高位为1时,输出1output reg[15:0] result);always@(*)begincase(alu_op) 4'b0000: result = 0;//清除4'b0001: result = ~in1;//取反4'b0010: result = in1[15] == 1 ? {1'b1,in1[15:1]} : {1'b0,in1[15:1]};//逻辑右移4'b0011: result = {in1[14:0],in1[15]};//循环左移4'b0100: result = in1 + in2;//加法default:result = 0;endcaseflag = in1[15];end
endmodule

DataMemory模块

module DataMemory(clk,DataRW,//读写信号,当为1时,写入;为0时,读出DAddr, //读或写的地址DataIn,//要写入的数据DataOut,//要读出的数据);input clk,DataRW;input[11:0] DAddr;input[15:0] DataIn;output [15:0] DataOut;reg [15:0] memory[9'd511:0];//512个16位存储单元integer i;initial beginfor(i=0;i<512;i=i+1)memory[i] = i;endalways@(posedge clk)beginif(DataRW)memory[DAddr] = DataIn;endassign DataOut = memory[DAddr];endmodule

二路选择器模块

module Multiplexer16(control, //选择信号,当为1时,输出in1,当为0时,输出in0in1,in0,out);input control;input[15:0] in1,in0;output[15:0] out;assign out = control ? in1:in0;
endmodule

ControlUnit模块

module ControlUnit(input [3:0]op,output reg stop,output reg jmp,output reg jcc,output reg Mem_Alu,//二路选择器信号,当为1时,输出Memoutput reg AccRW,//ACC读写信号,为1时写output reg DataMemRW,//数据存储器读写信号output reg[3:0]alu_op//alu控制信号);initial beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 0;     endalways@(*)begincase(op)//CLA   清除4'b0000:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 0;     end//COM   取反4'b0001:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 4'b0001;     end//SHR   算术右移4'b0010:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 4'b0010;   end//CSL   循环左移4'b0011:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 4'b0011;   end//ADD   加法4'b0100:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 4'b0100;   end//STA   存数4'b0101:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 1;alu_op = 4'b0000;   end//LDA     取数4'b0110:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 1;AccRW = 1;DataMemRW = 0;alu_op = 4'b0000;   end//JMP   无条件跳转4'b0111:beginstop = 0;jmp = 1;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 4'b0000; end//BAN   有条件跳转4'b1000:beginstop = 0;jmp = 0;jcc = 1;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 4'b0000; end//STP   停机4'b1111:beginstop = 1;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 4'b0000; enddefault:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 0;  endendcaseend
endmodule

顶层模块

module SignleCPU(input clk,input rst,output[3:0]op,output[11:0]addr,//指令分割操作码后的剩余部分output[15:0]acc_in,output[15:0]acc_out);wire[11:0]currentAddress;wire stop,jmp,ban,jcc,Mem_Alu,AccRW,DataMemRW,flag;wire[3:0] alu_op;wire[15:0]Ins,DataMem_out,result;PC pc(clk,rst,stop,jmp,ban,addr,currentAddress);InsMemory insmemory(currentAddress,Ins);assign op = Ins[15:12];assign addr = Ins[11:0];ControlUnit cu(op,stop,jmp,jcc,Mem_Alu,AccRW,DataMemRW,alu_op);ACC acc(clk,AccRW,acc_in,acc_out);ALU alu(alu_op,acc_out,DataMem_out,flag,result);assign ban = jcc & flag;DataMemory datamemory(clk,DataMemRW,addr,acc_out,DataMem_out);Multiplexer16 mul16(Mem_Alu,DataMem_out,result,acc_in);endmodule

测试模块

module Test();reg clk,rst;wire[3:0]op;wire[11:0]addr;wire[15:0]acc_out,acc_in;SignleCPU f(clk,rst,op,addr,acc_in,acc_out);initial beginclk = 0;rst=1;#155 $stop;endalways #5 clk = ~clk;
endmodule

波形图要结合指令来看
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【计算机组成原理】单周期CPU设计与实现-十条指令CPU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657979

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一