【计算机组成原理】单周期CPU设计与实现-十条指令CPU

2024-01-29 19:40

本文主要是介绍【计算机组成原理】单周期CPU设计与实现-十条指令CPU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

单周期CPU设计与实现

合肥工业大学 计算机组成原理 实验五 单周期CPU设计与实现——十条指令CPU
自己在图上画出来指令的执行过程就会很清晰明了。首先确认有哪些模块,PC,指令存储器,CU,ACC,ALU,数据存储器,像多路选择器,符号位扩展模块都是根据指令后来添加的。再确认模块的输入信号和输出信号。当然,我也一下子无法把每个模块的输入信号和输出信号的数量确定好,这是一个增量过程,根据不同的指令变化而变化,但是大致还是能确定一些的。

然后,在纸上画出每条指令的执行过程。比如CLA指令,一条指令从指令存储器出来,操作码送入CU,剩余的部分根据指令需求送入不同模块。从CU出来的是ACC的写信号,也有alu的操作控制信号。下一个周期有效。ACC中的数据会输入到ALU中,从ALU中的计算的结果还要回写到ACC中。剩余的非访存指令皆是如此。

PC模块

module PC(clk,rst,stop,//停机信号jmp,//无条件跳转信号,为1跳转ban,//有条件条跳转信号,为1跳转newAddress,currentAddress);
input clk,rst,stop,jmp,ban;
input[11:0]newAddress;
output reg[11:0] currentAddress;reg state;
initial beginstate = 1; currentAddress = 0;
end
always@(posedge clk or negedge rst)beginif(stop)state = 0; if(!rst)currentAddress = 0;else beginif(state)beginif(!jmp && !ban)currentAddress = currentAddress + 1;else beginif(jmp)currentAddress = newAddress;if(ban)currentAddress = currentAddress+newAddress;endendend
end
endmodule

InsMemory模块

本来想通过条件跳转实现一个从1+2+3+…+n的程序的,但是由于判断条件在ACC,结果也放到ACC中,因此就无法实现。如果再写一个寄存器堆的话,就可以实现了。再写个寄存器堆工作量又要上升不少,所以采取很笨的方法,多写几条加法指令就行了。

module InsMemory(input[11:0] Addr,output reg[15:0] Ins);reg[15:0]unit[5'd31:0];//32个16位存储单元initial beginunit[0] = 16'b0110_0000_0000_0001;//取数,将地址为1的数据放到ACC中unit[1] = 16'b0000_0000_0000_0000;//清除ACC,unit[2] = 16'b0100_0000_0000_0001;//加法,将地址为1的数据与ACC相加unit[3] = 16'b0100_0000_0000_0010;//加法,将地址为2的数据与ACC相加unit[4] = 16'b0100_0000_0000_0011;//加法,将地址为3的数据与ACC相加unit[5] = 16'b0100_0000_0000_0100;//加法,将地址为4的数据与ACC相加unit[6] = 16'b0100_0000_0000_0101;//加法,将地址为5的数据与ACC相加unit[7] = 16'b0011_0000_0000_0101;//ACC循环左移unit[8] = 16'b0010_0000_0000_0110;//ACC算术右移unit[9] = 16'b0111_0000_0000_1101;//无条件跳转,直接跳转到第13条指令unit[10] = 16'b0100_0000_0000_0110;//加法,将地址为6的数据与ACC相加unit[11] = 16'b0100_0000_0000_0111;//加法,将地址为7的数据与ACC相加unit[12] = 16'b0100_0000_0000_1000;//加法,将地址为8的数据与ACC相加unit[13] = 16'b0001_0000_0000_1001;//ACC取反unit[14] = 16'b1000_0000_0000_0011;//有条件跳转,相对当前指令,向下跳转3条,也就是第17条指令unit[15] = 16'b0100_0000_0000_1001;//加法,将地址为9的数据与ACC相加unit[16] = 16'b0100_0000_0000_1010;//加法,将地址为10的数据与ACC相加unit[17] = 16'b0101_0000_0000_0000;//存数,将ACC存放到数据存储器地址为0的存储单元中unit[18] = 16'b1111_0000_0000_1001;//停机指令endalways@(*)beginIns = unit[Addr];end endmodule

ACC模块

module ACC(input clk,input AccRW,//读写信号input[15:0] indata,output[15:0] outdata);reg[15:0] acc;initial beginacc = 0;   endassign outdata = acc;always@(posedge clk)beginif(AccRW)acc = indata;end
endmodule

ALU模块

module ALU(input [3:0]alu_op,input[15:0]in1,in2,output reg flag,//当ACC的最高位为1时,输出1output reg[15:0] result);always@(*)begincase(alu_op) 4'b0000: result = 0;//清除4'b0001: result = ~in1;//取反4'b0010: result = in1[15] == 1 ? {1'b1,in1[15:1]} : {1'b0,in1[15:1]};//逻辑右移4'b0011: result = {in1[14:0],in1[15]};//循环左移4'b0100: result = in1 + in2;//加法default:result = 0;endcaseflag = in1[15];end
endmodule

DataMemory模块

module DataMemory(clk,DataRW,//读写信号,当为1时,写入;为0时,读出DAddr, //读或写的地址DataIn,//要写入的数据DataOut,//要读出的数据);input clk,DataRW;input[11:0] DAddr;input[15:0] DataIn;output [15:0] DataOut;reg [15:0] memory[9'd511:0];//512个16位存储单元integer i;initial beginfor(i=0;i<512;i=i+1)memory[i] = i;endalways@(posedge clk)beginif(DataRW)memory[DAddr] = DataIn;endassign DataOut = memory[DAddr];endmodule

二路选择器模块

module Multiplexer16(control, //选择信号,当为1时,输出in1,当为0时,输出in0in1,in0,out);input control;input[15:0] in1,in0;output[15:0] out;assign out = control ? in1:in0;
endmodule

ControlUnit模块

module ControlUnit(input [3:0]op,output reg stop,output reg jmp,output reg jcc,output reg Mem_Alu,//二路选择器信号,当为1时,输出Memoutput reg AccRW,//ACC读写信号,为1时写output reg DataMemRW,//数据存储器读写信号output reg[3:0]alu_op//alu控制信号);initial beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 0;     endalways@(*)begincase(op)//CLA   清除4'b0000:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 0;     end//COM   取反4'b0001:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 4'b0001;     end//SHR   算术右移4'b0010:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 4'b0010;   end//CSL   循环左移4'b0011:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 4'b0011;   end//ADD   加法4'b0100:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 1;DataMemRW = 0;alu_op = 4'b0100;   end//STA   存数4'b0101:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 1;alu_op = 4'b0000;   end//LDA     取数4'b0110:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 1;AccRW = 1;DataMemRW = 0;alu_op = 4'b0000;   end//JMP   无条件跳转4'b0111:beginstop = 0;jmp = 1;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 4'b0000; end//BAN   有条件跳转4'b1000:beginstop = 0;jmp = 0;jcc = 1;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 4'b0000; end//STP   停机4'b1111:beginstop = 1;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 4'b0000; enddefault:beginstop = 0;jmp = 0;jcc = 0;Mem_Alu = 0;AccRW = 0;DataMemRW = 0;alu_op = 0;  endendcaseend
endmodule

顶层模块

module SignleCPU(input clk,input rst,output[3:0]op,output[11:0]addr,//指令分割操作码后的剩余部分output[15:0]acc_in,output[15:0]acc_out);wire[11:0]currentAddress;wire stop,jmp,ban,jcc,Mem_Alu,AccRW,DataMemRW,flag;wire[3:0] alu_op;wire[15:0]Ins,DataMem_out,result;PC pc(clk,rst,stop,jmp,ban,addr,currentAddress);InsMemory insmemory(currentAddress,Ins);assign op = Ins[15:12];assign addr = Ins[11:0];ControlUnit cu(op,stop,jmp,jcc,Mem_Alu,AccRW,DataMemRW,alu_op);ACC acc(clk,AccRW,acc_in,acc_out);ALU alu(alu_op,acc_out,DataMem_out,flag,result);assign ban = jcc & flag;DataMemory datamemory(clk,DataMemRW,addr,acc_out,DataMem_out);Multiplexer16 mul16(Mem_Alu,DataMem_out,result,acc_in);endmodule

测试模块

module Test();reg clk,rst;wire[3:0]op;wire[11:0]addr;wire[15:0]acc_out,acc_in;SignleCPU f(clk,rst,op,addr,acc_in,acc_out);initial beginclk = 0;rst=1;#155 $stop;endalways #5 clk = ~clk;
endmodule

波形图要结合指令来看
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【计算机组成原理】单周期CPU设计与实现-十条指令CPU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657979

相关文章

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函