复现LLP-GAN代码(使用CIFAR-10数据集)

2024-01-29 14:58

本文主要是介绍复现LLP-GAN代码(使用CIFAR-10数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码地址

LLP-GAN

CIFAR-10数据集

CIFAR-10数据集

环境准备

python3.6
tensorflow1.14
keras
2.2.5
其他的不用指定版本

数据集改为本地文件

环境准备好了以后,可以直接运行good-llp-gan.py,这里代码会去下载CIFAR-10数据集,会很慢,我们可以先下来来,然后本地直接加载。

下载好cifar-10-python.tar.gz,解压,放在dataset文件夹下。

load_local_cifar10.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionfrom tensorflow.keras import backend as K
import numpy as np
import osimport sys
from six.moves import cPickledef load_batch(fpath, label_key='labels'):"""Internal utility for parsing CIFAR data.# Argumentsfpath: path the file to parse.label_key: key for label data in the retrievedictionary.# ReturnsA tuple `(data, labels)`."""with open(fpath, 'rb') as f:if sys.version_info < (3,):d = cPickle.load(f)else:d = cPickle.load(f, encoding='bytes')# decode utf8d_decoded = {}for k, v in d.items():d_decoded[k.decode('utf8')] = vd = d_decodeddata = d['data']labels = d[label_key]data = data.reshape(data.shape[0], 3, 32, 32)return data, labelsdef load_data(ROOT):"""Loads CIFAR10 dataset.# ReturnsTuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`."""# dirname = 'cifar-10-batches-py'# origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'# path = get_file(dirname, origin=origin, untar=True)path = ROOTnum_train_samples = 50000x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')y_train = np.empty((num_train_samples,), dtype='uint8')for i in range(1, 6):fpath = os.path.join(path, 'data_batch_' + str(i))(x_train[(i - 1) * 10000: i * 10000, :, :, :],y_train[(i - 1) * 10000: i * 10000]) = load_batch(fpath)fpath = os.path.join(path, 'test_batch')x_test, y_test = load_batch(fpath)y_train = np.reshape(y_train, (len(y_train), 1))y_test = np.reshape(y_test, (len(y_test), 1))if K.image_data_format() == 'channels_last':x_train = x_train.transpose(0, 2, 3, 1)x_test = x_test.transpose(0, 2, 3, 1)return (x_train, y_train), (x_test, y_test)

然后修改utils.py中的load_data()函数

def load_data():if hp.target_dataset == "CIFAR-10":if os.path.exists(hp.DATASET_DIR + hp.target_dataset):print("load data from pickle")with open(hp.DATASET_DIR + hp.target_dataset + "/train_X.pkl", 'rb') as f:train_X = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/train_y.pkl", 'rb') as f:train_y = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/valid_X.pkl", 'rb') as f:valid_X = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/valid_y.pkl", 'rb') as f:valid_y = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/test_X.pkl", 'rb') as f:test_X = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/test_y.pkl", 'rb') as f:test_y = pickle.load(f)else:# (cifar_X_1, cifar_y_1), (cifar_X_2, cifar_y_2) = cifar10.load_data() (cifar_X_1, cifar_y_1), (cifar_X_2, cifar_y_2) = load_local_cifar10.load_data('dataset/cifar-10-batches-py')cifar_X = np.r_[cifar_X_1, cifar_X_2]cifar_y = np.r_[cifar_y_1, cifar_y_2]cifar_X = cifar_X.astype('float32') / 255.0cifar_y = np.eye(10)[cifar_y.astype('int32').flatten()]train_X, test_X, train_y, test_y = train_test_split(cifar_X, cifar_y, test_size=5000,random_state=hp.RANDOM_STATE)train_X, valid_X, train_y, valid_y = train_test_split(train_X, train_y, test_size=5000,random_state=hp.RANDOM_STATE)os.mkdir(hp.DATASET_DIR + hp.target_dataset)with open(hp.DATASET_DIR + hp.target_dataset + "/train_X.pkl", 'wb') as f1:pickle.dump(train_X, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/train_y.pkl", 'wb') as f1:pickle.dump(train_y, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/valid_X.pkl", 'wb') as f1:pickle.dump(valid_X, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/valid_y.pkl", 'wb') as f1:pickle.dump(valid_y, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/test_X.pkl", 'wb') as f1:pickle.dump(test_X, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/test_y.pkl", 'wb') as f1:pickle.dump(test_y, f1)return train_X, train_y, valid_X, valid_y, test_X, test_y

修改good-llp-gan.py

# 注掉
# trainx, trainy, validx, validy, testx, testy  = utils.load_data()cifar10_dir = 'dataset/cifar-10-batches-py'
trainx, trainy, validx, validy, testx, testy = utils.load_data()

然后运行,也可以使用gpu加速,只要加入这两行(tensorflow1.0)

import keras.backend.tensorflow_backend as KTFKTF.set_session(tf.Session(config=tf.ConfigProto(device_count={'gpu': 0})))

这篇关于复现LLP-GAN代码(使用CIFAR-10数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657278

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超