复现LLP-GAN代码(使用CIFAR-10数据集)

2024-01-29 14:58

本文主要是介绍复现LLP-GAN代码(使用CIFAR-10数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码地址

LLP-GAN

CIFAR-10数据集

CIFAR-10数据集

环境准备

python3.6
tensorflow1.14
keras
2.2.5
其他的不用指定版本

数据集改为本地文件

环境准备好了以后,可以直接运行good-llp-gan.py,这里代码会去下载CIFAR-10数据集,会很慢,我们可以先下来来,然后本地直接加载。

下载好cifar-10-python.tar.gz,解压,放在dataset文件夹下。

load_local_cifar10.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionfrom tensorflow.keras import backend as K
import numpy as np
import osimport sys
from six.moves import cPickledef load_batch(fpath, label_key='labels'):"""Internal utility for parsing CIFAR data.# Argumentsfpath: path the file to parse.label_key: key for label data in the retrievedictionary.# ReturnsA tuple `(data, labels)`."""with open(fpath, 'rb') as f:if sys.version_info < (3,):d = cPickle.load(f)else:d = cPickle.load(f, encoding='bytes')# decode utf8d_decoded = {}for k, v in d.items():d_decoded[k.decode('utf8')] = vd = d_decodeddata = d['data']labels = d[label_key]data = data.reshape(data.shape[0], 3, 32, 32)return data, labelsdef load_data(ROOT):"""Loads CIFAR10 dataset.# ReturnsTuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`."""# dirname = 'cifar-10-batches-py'# origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'# path = get_file(dirname, origin=origin, untar=True)path = ROOTnum_train_samples = 50000x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')y_train = np.empty((num_train_samples,), dtype='uint8')for i in range(1, 6):fpath = os.path.join(path, 'data_batch_' + str(i))(x_train[(i - 1) * 10000: i * 10000, :, :, :],y_train[(i - 1) * 10000: i * 10000]) = load_batch(fpath)fpath = os.path.join(path, 'test_batch')x_test, y_test = load_batch(fpath)y_train = np.reshape(y_train, (len(y_train), 1))y_test = np.reshape(y_test, (len(y_test), 1))if K.image_data_format() == 'channels_last':x_train = x_train.transpose(0, 2, 3, 1)x_test = x_test.transpose(0, 2, 3, 1)return (x_train, y_train), (x_test, y_test)

然后修改utils.py中的load_data()函数

def load_data():if hp.target_dataset == "CIFAR-10":if os.path.exists(hp.DATASET_DIR + hp.target_dataset):print("load data from pickle")with open(hp.DATASET_DIR + hp.target_dataset + "/train_X.pkl", 'rb') as f:train_X = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/train_y.pkl", 'rb') as f:train_y = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/valid_X.pkl", 'rb') as f:valid_X = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/valid_y.pkl", 'rb') as f:valid_y = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/test_X.pkl", 'rb') as f:test_X = pickle.load(f)with open(hp.DATASET_DIR + hp.target_dataset + "/test_y.pkl", 'rb') as f:test_y = pickle.load(f)else:# (cifar_X_1, cifar_y_1), (cifar_X_2, cifar_y_2) = cifar10.load_data() (cifar_X_1, cifar_y_1), (cifar_X_2, cifar_y_2) = load_local_cifar10.load_data('dataset/cifar-10-batches-py')cifar_X = np.r_[cifar_X_1, cifar_X_2]cifar_y = np.r_[cifar_y_1, cifar_y_2]cifar_X = cifar_X.astype('float32') / 255.0cifar_y = np.eye(10)[cifar_y.astype('int32').flatten()]train_X, test_X, train_y, test_y = train_test_split(cifar_X, cifar_y, test_size=5000,random_state=hp.RANDOM_STATE)train_X, valid_X, train_y, valid_y = train_test_split(train_X, train_y, test_size=5000,random_state=hp.RANDOM_STATE)os.mkdir(hp.DATASET_DIR + hp.target_dataset)with open(hp.DATASET_DIR + hp.target_dataset + "/train_X.pkl", 'wb') as f1:pickle.dump(train_X, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/train_y.pkl", 'wb') as f1:pickle.dump(train_y, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/valid_X.pkl", 'wb') as f1:pickle.dump(valid_X, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/valid_y.pkl", 'wb') as f1:pickle.dump(valid_y, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/test_X.pkl", 'wb') as f1:pickle.dump(test_X, f1)with open(hp.DATASET_DIR + hp.target_dataset + "/test_y.pkl", 'wb') as f1:pickle.dump(test_y, f1)return train_X, train_y, valid_X, valid_y, test_X, test_y

修改good-llp-gan.py

# 注掉
# trainx, trainy, validx, validy, testx, testy  = utils.load_data()cifar10_dir = 'dataset/cifar-10-batches-py'
trainx, trainy, validx, validy, testx, testy = utils.load_data()

然后运行,也可以使用gpu加速,只要加入这两行(tensorflow1.0)

import keras.backend.tensorflow_backend as KTFKTF.set_session(tf.Session(config=tf.ConfigProto(device_count={'gpu': 0})))

这篇关于复现LLP-GAN代码(使用CIFAR-10数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657278

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I