lightoj 1336 - Sigma Function(算数基本定理)

2024-01-29 12:48

本文主要是介绍lightoj 1336 - Sigma Function(算数基本定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is

Then we can write,

For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).

Output

For each case, print the case number and the result.

Sample Input

Output for Sample Input

4

3

10

100

1000

Case 1: 1

Case 2: 5

Case 3: 83

Case 4: 947



题意:让你求1~n中有多少个数的约数和是偶数。

这里我们利用了算数基本定理的另一条,N的约数和 = (1+p1+p1^2+p1^3+...+p1^a1)*(1+p2+p2^2+...+p2^a2)*...*(1+pn+pn^2+...+pn^an);

我们知道偶数乘偶数等于偶数,奇数乘奇数等于奇数,偶数乘奇数等于偶数,题目让求为偶数的数量,我们可以反过来求等于奇数的数量有多少,然后用n一减就得到了答案。

又因为质数中除了2,其他都是奇数,所以pi的所有次方都是奇数,那么要求奇数的数量,那么就得让每一个乘积项的值都为奇数,所以ai的值就一定是偶数。如果ai的值为偶数,就可以发现n就是一个完全平方数。

又因为不管2的幂次是多少,它的次方和全是偶数,再加上一个1,肯定为奇数,所以一个完全平方数的2倍的约数和也是奇数,当然一个完全平方数的4倍的约数和也是奇数,不过乘上4之后就变成了另一个完全平方数,所以就不用单独计算了。

所以1~n中约数和的数量就等于n - 1~n中完全平方数的个数 - 1~n中完全平方数的2倍小于n的个数(就相当于1~n/2中完全平方数的个数)


#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long longusing namespace std;int main(void)
{int T;LL n;scanf("%d",&T);int cas = 1;while(T--){scanf("%lld",&n);LL ans = n - (int)sqrt(n) - (int)sqrt(n/2);printf("Case %d: %lld\n",cas++,ans);}return 0;
}


这篇关于lightoj 1336 - Sigma Function(算数基本定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656944

相关文章

C#连接SQL server数据库命令的基本步骤

《C#连接SQLserver数据库命令的基本步骤》文章讲解了连接SQLServer数据库的步骤,包括引入命名空间、构建连接字符串、使用SqlConnection和SqlCommand执行SQL操作,... 目录建议配合使用:如何下载和安装SQL server数据库-CSDN博客1. 引入必要的命名空间2.

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

mapstruct中的@Mapper注解的基本用法

《mapstruct中的@Mapper注解的基本用法》在MapStruct中,@Mapper注解是核心注解之一,用于标记一个接口或抽象类为MapStruct的映射器(Mapper),本文给大家介绍ma... 目录1. 基本用法2. 常用属性3. 高级用法4. 注意事项5. 总结6. 编译异常处理在MapSt

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

git stash命令基本用法详解

《gitstash命令基本用法详解》gitstash是Git中一个非常有用的命令,它可以临时保存当前工作区的修改,让你可以切换到其他分支或者处理其他任务,而不需要提交这些还未完成的修改,这篇文章主要... 目录一、基本用法1. 保存当前修改(包括暂存区和工作区的内容)2. 查看保存了哪些 stash3. 恢