WAVE头分析代码

2024-01-29 09:48
文章标签 分析 代码 wave

本文主要是介绍WAVE头分析代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章是网络上流行的比较广泛的针对WAVE头分析的文章, 整体写的简单明了非常好,但是

18H

2

int

采样率(每秒样本数),表示每个通道的播放速度,

应该是不对的, 如果按这个该文章的计算,WAVE头只有42byte, 实际上wave头是44byte.

参考MS的标准文档知道这个采样率是占4byte.( WAVE PCM soundfile format )

// ----------------------------------------------------------------

WAVE文件格式剖析

 
WAVE 文件作为多媒体中使用的声波文件格式之一,它是以RIFF格式为标准的。RIFF是英文Resource Interchange File Format的缩写,每个WAVE文件的头四个字节便是"RIFF"WAVE文件由文件头和数据体两大部分组成。其中文件头又分为RIFFWAV文件 标识段和声音数据格式说明段两部分。WAVE文件各部分内容及格式见附表。[!21ki@][@21ki!]
常 见的声音文件主要有两种,分别对应于单声道(11.025KHz 采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指:声音信号在""转换过程中单位时间内采样的次数。 采样值是指每一次采样周期内声音模拟信号的积分值。[!21ki@][@21ki!]
对于单声道声音文件,采样数据为八位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。[!21ki@][@21ki!]
        WAVE文件数据块包含以脉冲编码调制(PCM)格式表示的样本。WAVE文件是由样本组织而成的。在单声道WAVE文件中,声道0代表左声道,声道1代表右声道。在多声道WAVE文件中,样本是交替出现的。

  WAVE文件格式说明表  [!21ki@][@21ki!]

 

偏移地址

字节数

数据类型

  

 

文件头[!21ki@][@21ki!]

00H

4

char

"RIFF"标志

04H

4

long int

文件长度

08H

4

char

"WAVE"标志

0CH

4

char

"fmt"标志

10H

4

 

过渡字节(不定)

14H

2

int

格式类别(10HPCM形式的声音数据)

16H

2

int

通道数,单声道为1,双声道为2

18H

2

int

采样率(每秒样本数),表示每个通道的播放速度,

1CH

4

long int

波形音频数据传送速率,其值为通道数×每秒数据位数×每样本的数据位数/8。播放软件利用此值可以估计缓冲区的大小。

20H

2

int

数据块的调整数(按字节算的),其值为通道数×每样本的数据位值/8。播放软件需要一次处理多个该值大小的字节数据,以便将其值用于缓冲区的调整。

22H

2

 

每样本的数据位数,表示每个声道中各个样本的数据位数。如果有多个声道,对每个声道而言,样本大小都一样。

24H

4

char

数据标记符"data

28H

4

long int

语音数据的长度

  PCM数据的存放方式: [!21ki@][@21ki!]

 

样本1

样本2

8位单声道

0声道

0声道

8位立体声

0声道(左)

1声道(右)

0声道(左)

1声道(右)

16位单声道

0声道低字节

0声道高字节

0声道低字节

0声道高字节

16位立体声

0声道(左)低字节

0声道(左)高字节

1声道(右)低字节

1声道(右)高字节

 WAVE文件的每个样本值包含在一个整数i中,i的长度为容纳指定样本长度所需的最小字节数。首先存储低有效字节,表示样本幅度的位放在i的高有效位上,剩下的位置为0,这样8位和16位的PCM波形样本的数据格式如下所示。  [!21ki@][@21ki!]

样本大小

数据格式

最大值

最小值

8PCM

unsigned int

225

0

16PCM

int

32767

-32767

分析WAVE头的代码

/*

                     WAVE文件头(PCM格式)

                    

field         size   type       description

-----------------------------------------------------------------------

ChunkID       4      char       "RIFF"标志

ChunkSize     4      long int   文件长度(WAVE文件的大小, 不含前8个字节)

Format        4      char       "WAVE"标志

SubChunk1ID   4      char       "fmt "标志

SubChunk1Size 4                 过渡字节(不定)

AudioFormat   2      short int  格式类别(1PCM格式的声音数据)

NumChannels   2      short int  通道数(单声道为1, 双声道为2)

SampleRate    4      long int   采样率(每秒样本数), 表示每个通道的播放速度

                                一般情况是每秒采样44100

                               

ByteRate      4      long int   波形音频数据传输速率, 其值为:通道数*每秒数据位数*每样本的数据位数/8

                                播放软件可以利用该值估计缓冲区大小

                                2 *

BlockAlign    2      short int  每样本的数据位数(按字节算), 其值为:通道数*每样本的数据位值/8 播放

软件需要一次处理多个该值大小的字节数据, 以便将其值用于缓冲区的调整

                                每样本占几个字节 : NumChannels * 16/8

                               

BitsPerSample 2                 每样本的数据位数, 表示每个声道中各个样本的数据位数. 如果有多个声道,

                                对每个声道而言, 样本大小都一样

                                就是分辨率, 一般是16, 8位也有但是要少一些.

                               

SubChunk2ID       4      char   数据标记"data"

SubChunk2Size 4      long int   语音数据的长度

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <mem.h>

/* WAVE文件头 */

typedef struct wave_tag

{

    char              ChunkID[5];       // "RIFF"标志

    unsigned long int ChunkSize;    // 文件长度(WAVE文件的大小, 不含前8个字节)

    char              Format[5];    // "WAVE"标志

   

    char             SubChunk1ID[5];   // "fmt "标志

    unsigned long int SubChunk1Size;    /*

                                    * 过渡字节(不定)

                                    * 16 for PCM. This is the size of the rest of the

                                    * Subchunk which follows this number.

                                    */

    unsigned short int   AudioFormat;  /*

                                    * 格式类别(10HPCM格式的声音数据)

                                    * PCM=1 (i.e. Linear quantization)

                                    * Values other than 1 indicate some form of compression.

                                    */

    unsigned short int   NumChannels;  // 通道数(单声道为1, 双声道为2)

    //unsigned short int SampleRate;       // 采样率(每秒样本数), 表示每个通道的播放速度

    unsigned long int    SampleRate;       // 采样率(每秒样本数), 表示每个通道的播放速度

    unsigned long int ByteRate;     /*

                                     * 波形音频数据传输速率, 其值为:通道数*每秒数据位数*每样本的数据位数/8

                                     * 播放软件可以利用该值估计缓冲区大小

                                     */

    unsigned short int   BlockAlign;       /*

                                      * 每样本的数据位数(按字节算), 其值为:通道数*每样本的数据位值/8 播放

                                     * 软件需要一次处理多个该值大小的字节数据, 以便将其值用于缓冲区的调整

                                     */

    unsigned short int   BitsPerSample;    /*

                                    * 每样本的数据位数, 表示每个声道中各个样本的数据位数. 如果有多个声道,

                                    * 对每个声道而言, 样本大小都一样

                                    */

   

    char              SubChunk2ID[5];   // 数据标记"data"

    unsigned long int SubChunk2Size;    // 语音数据的长度

} WAVE;

/* 分辨率为16的样本 */

typedef struct swatch16_tag

{

     char swing;

     

} swatch16;

/* 分辨率为8的样本 */

typedef struct swatch8_tag

{

   

} swatch8;

// 爱情复兴 :), 长度: 41.5MB(43,554,860 字节)

#define    FILE_PATH  "aiqingfuxing1.wav"

/*

 * 分析音频文件格式

 */

int

main ( void )

{

    FILE   *stream;

    WAVE   wav;

   

    stream = fopen( FILE_PATH, "r" );  /* open a file for reading */

   

    /*

     * wav文件的各个field

     */

    fread(wav.ChunkID,          4, 1, stream);

    wav.ChunkID[4] = (char)0;

    fread(&(wav.ChunkSize),     4, 1, stream);

    fread(wav.Format,           4, 1, stream);

    wav.Format[4] = (char)0;

    fread(wav.SubChunk1ID,      4, 1, stream);                                                                                          

    wav.SubChunk1ID[4] = (char)0;

    fread(&(wav.SubChunk1Size), 4, 1, stream);

    fread(&(wav.AudioFormat),   2, 1, stream);

    fread(&(wav.NumChannels),   2, 1, stream);

    fread(&(wav.SampleRate), 4, 1, stream);

    fread(&(wav.ByteRate),      4, 1, stream);

    fread(&(wav.BlockAlign), 2, 1, stream);

    fread(&(wav.BitsPerSample), 2, 1, stream);

    fread(wav.SubChunk2ID,      4, 1, stream);

    wav.SubChunk2ID[4] = (char)0;

    fread(&(wav.SubChunk2Size), 4, 1, stream);

   

    printf("ChunkID---->%s/n",         wav.ChunkID);

    printf("ChunkSize---->%ld/n",      wav.ChunkSize);

    printf("Format---->%s/n",          wav.Format);

    printf("SubChunk1ID---->%s/n",     wav.SubChunk1ID);

    printf("SubChunk1Size---->%ld/n", wav.SubChunk1Size);

    printf("AudioFormat---->%d/n",     wav.AudioFormat);

    printf("NumChannels---->%d/n",     wav.NumChannels);

    printf("SampleRate---->%ld/n",     wav.SampleRate);

    printf("ByteRate---->%ld/n",       wav.ByteRate);

    printf("BlockAlign---->%d/n",      wav.BlockAlign);

    printf("BitsPerSample---->%d/n",   wav.BitsPerSample);

    printf("SubChunk2ID---->%s/n",     wav.SubChunk2ID);

    printf("SubChunk2Size---->%ld/n", wav.SubChunk2Size);

   

    printf("*************rrr**********/n");   //

   

   

    system( "pause" );

    return 0;

}

/*

              打印结果

ChunkID---->RIFF

ChunkSize---->43554852

Format---->WAVE

SubChunk1ID---->fmt

SubChunk1Size---->16

AudioFormat---->1

NumChannels---->2

SampleRate---->44100

ByteRate---->176400

BlockAlign---->4

BitsPerSample---->16

SubChunk2ID---->data

SubChunk2Size---->43554816

*************rrr**********

请按任意键继续. . .

*/

/*

                  WAVE头的16进制码

52 49 46 46 C 4 86 01 00 57 41 56 45 66 6D 74 20

10 00 00 00 01 00 02 00 44 AC 00 00 10 B1 02 00

04 00 10 00 64 61 74 61 A 0 86 01 00 D7 FA DA FE

52 49 46 46          ChunkID           "RIFF"

C4 86 01 00          ChunkSize      

57 41 56 45           Format            "WAVE"

66 6D 74 20          SubChunk1ID       "fmt "

10 00 00 00          SubChunk1Size

01 00                 AudioFormat

02 00                 NumChannels

44 AC 00 00          SampleRate

10 B1 02 00          ByteRate

04 00                 BlockAlign

10 00                 BitsPerSample

64 61 74 61          SubChunk2ID

A0 86 01 00          SubChunk2Size

*/

这篇关于WAVE头分析代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656519

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.