基于QC-LDPC编码的循环移位网络的FPGA实现

2024-01-28 21:44

本文主要是介绍基于QC-LDPC编码的循环移位网络的FPGA实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、桶式移位寄存器(barrel shifter) 

        八位桶式移位寄存器的VHDL实现如下,由于每一层结构相似,于是采用生成语句for_generate实现,使用该代码实现的RTL级分析和理论的结构一致,仿真结果也符合预期。 

entity barrel_shift isGENERIC(DATA_WIDTH:   INTEGER:=8;CTRL_WIDTH:   INTEGER:=3);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);CTRL:       IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));
end barrel_shift;architecture Behavioral of barrel_shift is
SIGNAL LAYER_1_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL LAYER_2_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL LAYER_3_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
beginLAYER_1:FOR I IN 0 TO 7 GENERATEG1:IF I<=3 GENERATELAYER_1_TEMP(I)<=DATA_IN(I)WHEN CTRL(2)='0'ELSE DATA_IN(I+4);END GENERATE G1;G2:IF I>3 GENERATE                                              LAYER_1_TEMP(I)<=DATA_IN(I)WHEN CTRL(2)='0'ELSE DATA_IN(I-4);END GENERATE G2;                                                 END GENERATE LAYER_1;LAYER_2:FOR I IN 0 TO 7 GENERATEG3:IF I<=5 GENERATELAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN CTRL(1)='0'ELSE LAYER_1_TEMP(I+2);END GENERATE G3;G4:IF I>5 GENERATE                                              LAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN CTRL(1)='0'ELSE LAYER_1_TEMP(I-6);END GENERATE G4;                                                 END GENERATE LAYER_2;LAYER_3:FOR I IN 0 TO 7 GENERATEG5:IF I<=6 GENERATELAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN CTRL(0)='0'ELSE LAYER_2_TEMP(I+1);END GENERATE G5;G6:IF I>6 GENERATE                                              LAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN CTRL(0)='0'ELSE LAYER_2_TEMP(I-7);END GENERATE G6;                               END GENERATE LAYER_3;    DATA_OUT<=LAYER_3_TEMP;end Behavioral;

二、QSN网络

 2.1LSN网络

        该网络的VHDL代码和RTL分析如下 

entity LSN_9x8_network isGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);LSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0));
end LSN_9x8_network;architecture Behavioral of LSN_9x8_network is
SIGNAL LAYER_1_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-9 DOWNTO 0);
SIGNAL LAYER_2_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-5 DOWNTO 0);
SIGNAL LAYER_3_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-3 DOWNTO 0);
SIGNAL LAYER_4_TEMP:    STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
beginLAYER_1:FOR I IN 0 TO 0 GENERATEG1:IF I=0 GENERATELAYER_1_TEMP(I)<=DATA_IN(I)WHEN LSN_CTRL(3)='0'ELSE DATA_IN(I+8);END GENERATE G1;                                       END GENERATE LAYER_1;LAYER_2:FOR I IN 0 TO 4 GENERATE--5G2:IF I=0 GENERATELAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN LSN_CTRL(2)='0'ELSE DATA_IN(I+4);END GENERATE G2; G3:IF I>0 GENERATELAYER_2_TEMP(I)<=DATA_IN(I)     WHEN LSN_CTRL(2)='0'ELSE DATA_IN(I+4);END GENERATE G3;                                               END GENERATE LAYER_2;LAYER_3:FOR I IN 0 TO 6 GENERATE--7G4:IF I<=2 GENERATELAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN LSN_CTRL(1)='0'ELSE LAYER_2_TEMP(I+2);END GENERATE G4; G5:IF I>2 AND I<=4 GENERATELAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN LSN_CTRL(1)='0'ELSE DATA_IN(I+2);END GENERATE G5;G6:IF I>4 GENERATELAYER_3_TEMP(I)<=DATA_IN(I)     WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+2);END GENERATE G6;                 END GENERATE LAYER_3;    LAYER_4:FOR I IN 0 TO 7 GENERATE---8G7:IF I<=5 GENERATELAYER_4_TEMP(I)<=LAYER_3_TEMP(I)WHEN LSN_CTRL(0)='0'ELSE LAYER_3_TEMP(I+1);END GENERATE G7; G8:IF I=6 GENERATELAYER_4_TEMP(I)<=LAYER_3_TEMP(I)WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+1);END GENERATE G8;G9:IF I>6 GENERATELAYER_4_TEMP(I)<=DATA_IN(I)     WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+1);END GENERATE G9;                         END GENERATE LAYER_4; DATA_OUT<=LAYER_4_TEMP(DATA_WIDTH-2 DOWNTO 0);end Behavioral;

 2.2RSN网络 

 9x9的右移网络的VHDL实现和RTL分析如下

entity RSN_9x9_network isGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);RSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));
end RSN_9x9_network;architecture Behavioral of RSN_9x9_network isCOMPONENT LSN_9x8_network ISGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);LSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0));END COMPONENT;
beginLSN_9X8:LSN_9x8_networkGENERIC MAP(DATA_WIDTH  =>  DATA_WIDTH,CTRL_WIDTH  =>  CTRL_WIDTH)PORT MAP(   DATA_IN(0)  =>  DATA_IN(8),DATA_IN(1)  =>  DATA_IN(7),DATA_IN(2)  =>  DATA_IN(6),DATA_IN(3)  =>  DATA_IN(5),DATA_IN(4)  =>  DATA_IN(4),DATA_IN(5)  =>  DATA_IN(3),DATA_IN(6)  =>  DATA_IN(2),DATA_IN(7)  =>  DATA_IN(1), DATA_IN(8)  =>  DATA_IN(0),   LSN_CTRL    =>  RSN_CTRL,DATA_OUT(0) =>  DATA_OUT(8),DATA_OUT(1) =>  DATA_OUT(7),DATA_OUT(2) =>  DATA_OUT(6),DATA_OUT(3) =>  DATA_OUT(5),DATA_OUT(4) =>  DATA_OUT(4),DATA_OUT(5) =>  DATA_OUT(3),DATA_OUT(6) =>  DATA_OUT(2),DATA_OUT(7) =>  DATA_OUT(1));              DATA_OUT(0) <=  DATA_IN(0);
end Behavioral;

  2.3MN网络

entity MN_9x9_network isGENERIC(DATA_WIDTH:   INTEGER:=9);Port (LSN_DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);RSN_DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);M_CTRL:         IN  STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);DATA_OUT:       OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));
end MN_9x9_network;architecture Behavioral of MN_9x9_network is
beginG1:FOR I IN 0 TO DATA_WIDTH-2 GENERATEDATA_OUT(I)<=RSN_DATA_IN(I) WHEN M_CTRL(I)='0' ELSE LSN_DATA_IN(I);END GENERATE G1;DATA_OUT(8)<='0' WHEN FALSE ELSE RSN_DATA_IN(8);
end Behavioral;

 2.4控制模块 

 控制模块的VHDL实现和仿真波形图如下

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;entity CTRL isGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (CLK:        IN  STD_LOGIC;RST_N:      IN  STD_LOGIC;EN:         IN  STD_LOGIC;SHIFT_NUM:  IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);M:          OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);LSN_SHIFT:  OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);RSN_SHIFT:  OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0); VALID:      OUT STD_LOGIC  );
end CTRL;architecture Behavioral of CTRL isbeginLSN_SHIFT_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENLSN_SHIFT<=(OTHERS=>'0');ELSIF RISING_EDGE(CLK) THENIF EN='1'THENLSN_SHIFT<=SHIFT_NUM;END IF;END IF;END PROCESS;RSN_SHIFT_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENRSN_SHIFT<=(OTHERS=>'0');ELSIF RISING_EDGE(CLK) THENIF EN='1'THENRSN_SHIFT<=9-SHIFT_NUM;END IF;END IF;END PROCESS;M_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENM<=(OTHERS=>'0');ELSIF RISING_EDGE(CLK) THENIF EN='1'THENIF SHIFT_NUM>=9 THEN M(0)<='0';ELSE M(0)<='1';END IF;IF SHIFT_NUM>=8 THEN M(1)<='0';ELSE M(1)<='1';END IF;IF SHIFT_NUM>=7 THEN M(2)<='0';ELSE M(2)<='1';END IF;IF SHIFT_NUM>=6 THEN M(3)<='0';ELSE M(3)<='1';END IF;IF SHIFT_NUM>=5 THEN M(4)<='0';ELSE M(4)<='1';END IF;IF SHIFT_NUM>=4 THEN M(5)<='0';ELSE M(5)<='1';END IF;IF SHIFT_NUM>=3 THEN M(6)<='0';ELSE M(6)<='1';END IF;IF SHIFT_NUM>=2 THEN M(7)<='0';ELSE M(7)<='1';END IF;END IF;END IF;END PROCESS;VALID_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THEN                 VALID<='0';            ELSIF RISING_EDGE(CLK) THEN      IF EN='1'THENVALID<='1';       ELSEVALID<='0';       END IF;END IF;END PROCESS;
end Behavioral;

  2.5顶层

        顶层的作用是将子模块例化,VHDL实现和RTL分析如下

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;entity QSN_9x9_network isGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (CLK:        IN  STD_LOGIC;RST_N:      IN  STD_LOGIC;EN:         IN  STD_LOGIC;SHIFT_NUM:  IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);VALID:      OUT STD_LOGIC);
end QSN_9x9_network;architecture Behavioral of QSN_9x9_network isCOMPONENT LSN_9x8_network ISGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);LSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0));END COMPONENT;COMPONENT RSN_9x9_network ISGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);RSN_CTRL:   IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);DATA_OUT:   OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));END COMPONENT;COMPONENT MN_9x9_network ISGENERIC(DATA_WIDTH:   INTEGER:=9);Port (LSN_DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);RSN_DATA_IN:    IN  STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);M_CTRL:         IN  STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);DATA_OUT:       OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0));END COMPONENT;COMPONENT CTRL ISGENERIC(DATA_WIDTH:   INTEGER:=9;CTRL_WIDTH:   INTEGER:=4);Port (CLK:        IN  STD_LOGIC;RST_N:      IN  STD_LOGIC;EN:         IN  STD_LOGIC;SHIFT_NUM:  IN  STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);M:          OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);LSN_SHIFT:  OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);RSN_SHIFT:  OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0); VALID:      OUT STD_LOGIC  );END COMPONENT;
--CTRL
SIGNAL M_CTRL:      STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
SIGNAL LSN_SHIFT:   STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
SIGNAL RSN_SHIFT:   STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
SIGNAL CTRL_EN:     STD_LOGIC;
--LSN
SIGNAL LSN_OUT:     STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
--RSN
SIGNAL RSN_OUT:     STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
--MN_OUT
SIGNAL OUT_REG:     STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL DATA_OUT_REG:STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
--VALID_REG
SIGNAL VALID_REG:   STD_LOGIC;
beginCTRL_GE:CTRLGENERIC MAP(DATA_WIDTH =>   DATA_WIDTH,CTRL_WIDTH =>   CTRL_WIDTH)PORT MAP(CLK        =>   CLK,RST_N      =>   RST_N,EN         =>   EN,SHIFT_NUM  =>   SHIFT_NUM,M          =>   M_CTRL,LSN_SHIFT  =>   LSN_SHIFT,RSN_SHIFT  =>   RSN_SHIFT,VALID      =>   CTRL_EN);LSN:LSN_9x8_networkGENERIC MAP(DATA_WIDTH =>   DATA_WIDTH,CTRL_WIDTH =>   CTRL_WIDTH)PORT MAP(DATA_IN    =>   DATA_IN,  LSN_CTRL   =>   LSN_SHIFT,DATA_OUT   =>   LSN_OUT);RSN:RSN_9x9_networkGENERIC MAP(DATA_WIDTH =>   DATA_WIDTH,CTRL_WIDTH =>   CTRL_WIDTH)PORT MAP(DATA_IN    =>   DATA_IN,  RSN_CTRL   =>   RSN_SHIFT,DATA_OUT   =>   RSN_OUT);MN:MN_9x9_networkGENERIC MAP(DATA_WIDTH =>   DATA_WIDTH)PORT MAP(  LSN_DATA_IN=>   LSN_OUT,RSN_DATA_IN=>   RSN_OUT,M_CTRL     =>   M_CTRL,DATA_OUT   =>   OUT_REG);OUT_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENDATA_OUT_REG<=(OTHERS=>'0');ELSIF RISING_EDGE(CLK)THENIF CTRL_EN='1'THENDATA_OUT_REG<=OUT_REG;END IF;END IF;END PROCESS;DATA_OUT<=DATA_OUT_REG;VALID_REG_GE:PROCESS(CLK,RST_N)BEGINIF RST_N='0'THENVALID_REG<='0';ELSIF RISING_EDGE(CLK)THENIF CTRL_EN='1'THENVALID_REG<='1';ELSEVALID_REG<='0';END IF;END IF;END PROCESS;VALID<=VALID_REG;end Behavioral;

        使用时钟CLK和复位信号RST_N控制时序,并加入输入输出使能信号。最后实现的结果如下,可以看到左循环移位1~9的结果均正确。 

这篇关于基于QC-LDPC编码的循环移位网络的FPGA实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654862

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被