GEE数据集——MOD13A1.006Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品

本文主要是介绍GEE数据集——MOD13A1.006Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据名称:

MOD13A1.006

Modis

16天

Terra

500m

数据来源:

NASA

时空范围:

2000-2022年

空间范围:

全国

波段

名称波段单位最小值最大值比例因子波长描述
NDVIB1NDVI-2000100000.0001Normalized Difference Vegetation Index
EVIB2EVI-2000100000.0001Enhanced Vegetation Index
VIQB3Bit FieldVI quality indicators
RRB40100000.0001645nmRed surface reflectance
NIRRB50100000.0001858nmNIR surface reflectance
BRB60100000.0001469nmBlue surface reflectance
MIRRB70100000.00012130nm/2105-2155nmMIR surface reflectance
VZAB8Degree0180000.01View zenith angle
SZAB90180000.01Solar zenith angle
RAAB10-18000180000.01Relative azimuth angle
CDOYB11Julian day1366Julian day of year
PRB12RankQuality reliability of VI pixel

数据简介:

MOD13A1 V6数据集是由Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品,空间分辨率为500米,具备两个主要的植被层,分别是栅格归一化植被指数(NDVI)和增强型植被指数(EVI)。产品遵循低云、低视角和最高NDVI/EVI值的原则,从获取的16天数据中选择最佳值作为影像的像素值。可用于检测植被状态和土地覆盖利用变化,并且,能够进一步用于生物化学、水循环过程和全球及区域性的气候研究,还有LAI、GPP等参数的反演。前言 – 人工智能教程

V6Terra星搭载的中分辨率成像光谱仪(MOD13A1)是一种用于获取地球植被指数的传感器。该传感器通过对地球表面的光谱信息进行观测和记录,能够提供高质量的L3级植被指数产品,为地球科学研究和生态环境监测提供了重要的数据支持。

L3级植被指数产品是通过对MODIS传感器获取的遥感数据进行处理和分析得到的。MOD13A1产品主要包括三个指标:归一化差异植被指数(NDVI)、归一化差异水体指数(NDWI)和归一化差异建筑物指数(NDWI)。

其中,归一化差异植被指数(NDVI)是衡量地表植被覆盖程度和活力的重要指标。NDVI的计算公式为(NIR - RED)/ (NIR + RED),其中NIR表示近红外波段的反射率,RED表示红光波段的反射率。NDVI的数值范围在-1到1之间,数值越高表示地表植被覆盖越多,数值越低表示植被覆盖越少。通过监测NDVI的变化,可以提供有关植被开花、叶片生长和植物胁迫状况的信息。

归一化差异水体指数(NDWI)是用于评估地表水体分布的指标。NDWI的计算公式为(NIR - SWIR)/ (NIR + SWIR),其中NIR表示近红外波段的反射率,SWIR表示短波红外波段的反射率。NDWI的数值范围从-1到1,数值越高表示地表水体分布越密集,数值越低表示水体分布越稀疏。通过监测NDWI的变化,可以提供有关水体资源分布和蓄水情况的信息。

归一化差异建筑物指数(NDBI)是用于评估建筑物分布密度的指标。NDBI的计算公式为(SWIR - NIR)/ (SWIR + NIR),其中SWIR表示短波红外波段的反射率,NIR表示近红外波段的反射率。NDBI的数值范围从-1到1,数值越高表示建筑物分布越密集,数值越低表示建筑物分布越稀疏。通过监测NDBI的变化,可以提供有关城市建设和土地利用的信息。

V6Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品具有以下特点:

  1. 高时空分辨率:MOD13A1产品提供的植被指数数据具有250米的空间分辨率和16天的时间分辨率,可以提供详细的植被覆盖和水体分布的信息,适用于不同尺度的研究和监测需求。

  2. 高质量数据:V6Terra星搭载的中分辨率成像光谱仪通过高精度的光谱观测和数据处理算法,可以提供高质量的植被指数产品。这些产品经过严格的校正和验证,能够准确反映地表植被、水体和建筑物的分布情况。

  3. 多指标综合分析:MOD13A1产品包括了归一化差异植被指数(NDVI)、归一化差异水体指数(NDWI)和归一化差异建筑物指数(NDWI)三个指标,能够提供多层次、多维度的地表信息。这些指标可以综合分析,为地球科学研究和生态环境监测提供全面的数据支持。

总之,V6Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品是一项重要的遥感技术应用。这些产品能够提供高质量、高时空分辨率的植被、水体和建筑物信息,为地球科学研究和生态环境监测提供了重要的数据支持。

引用代码:

MODIS/006/MOD13A1

 代码

/*** @File    :   MOD13A1.006* @Time    :   2023/06/06* @Author  :   GEOVIS Earth Brain* @Version :   0.1.0* @Contact :   中国(安徽)自由贸易试验区合肥市高新区望江西路900号中安创谷科技园一期A1楼36层* @License :   (C)Copyright 中科星图数字地球合肥有限公司 版权所有* @Desc    :  数据集key为MODIS/006/MOD13A1的MOD13A1.006类数据集  * @Name    :   MOD13A1.006数据集
*/
//指定检索数据集,可设置检索的空间和时间范围,以及属性过滤条件
var imageCollection = gve.ImageCollection("MODIS/006/MOD13A1").filterDate('2021-01-16','2021-01-31').select(['NDVI']).limit(10);print("imageCollection",imageCollection);var img = imageCollection.first();print("first", img);var visParams = {
//    gamma: 1,
//    brightness: 1,min: 0,max: 9000,palette: {"band_rendering": {"pseudocolor": {"colormap": ['#FCD163','#66A000','#3E8601','#004C00','#023B01']}}}
};Map.centerObject(img);
Map.addLayer(img,visParams);

通过LP DAAC获得的MODIS数据和产品在后续使用,销售或再分发没有任何限制,具体请参阅https://lpdaac.usgs.gov/data/data-citation-and-policies/ 

这篇关于GEE数据集——MOD13A1.006Terra星搭载的中分辨率成像光谱仪获取的L3级植被指数产品的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654653

相关文章

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL 获取字符串长度及注意事项

《MySQL获取字符串长度及注意事项》本文通过实例代码给大家介绍MySQL获取字符串长度及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 获取字符串长度详解 核心长度函数对比⚠️ 六大关键注意事项1. 字符编码决定字节长度2

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模