Offer必备算法_二分查找_八道力扣OJ题详解(由易到难)

2024-01-28 02:44

本文主要是介绍Offer必备算法_二分查找_八道力扣OJ题详解(由易到难),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

二分查找算法原理

①力扣704. 二分查找

解析代码

②力扣34. 在排序数组中查找元素的第一个和最后一个位置

解析代码

③力扣69. x 的平方根 

解析代码

④力扣35. 搜索插入位置

解析代码

⑤力扣852. 山脉数组的峰顶索引

解析代码

⑥力扣162. 寻找峰值

解析代码

⑦力扣153. 寻找旋转排序数组中的最小值

解析代码

⑧力扣LCR 173. 点名

解析代码

本篇完。


二分查找算法原理

        二分查找一种效率较高的查找方法。已经有严谨的数学证明其时间复杂度是O(logN),如果在全国14亿人口中找一个人,那么只需查找31次,但是,二分查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列(无序有时也行,但是要有二段性)。一般步骤如下:

        首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

以前学C/C++也写过二分查找的代码,直接刷题:

①力扣704. 二分查找

704. 二分查找 - 力扣(LeetCode)

难度 简单

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1
示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

提示:

  1. 你可以假设 nums 中的所有元素是不重复的。
  2. n 将在 [1, 10000]之间。
  3. nums 的每个元素都将在 [-9999, 9999]之间。
class Solution {
public:int search(vector<int>& nums, int target) {}
};

解析代码

首先是有序的,就知道用二分,且这是一道朴素的二分(后面有不朴素的),简单题重拳出击:

class Solution {
public:int search(vector<int>& nums, int target) {int left = 0, right = nums.size() - 1;while(left <= right){int mid = left + (right - left) / 2;if(nums[mid] > target){right = mid - 1;}else if(nums[mid] < target){left = mid + 1;}else{return mid;}}return -1;}
};

②力扣34. 在排序数组中查找元素的第一个和最后一个位置

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

难度 中等

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

提示:

  • 0 <= nums.length <= 10^5
  • -10^9 <= nums[i] <= 10^9
  • nums 是一个非递减数组
  • -10^9 <= target <= 10^9
class Solution {
public:vector<int> searchRange(vector<int>& nums, int target) {}
};

解析代码

非递减,就是数组往后都是大于或者等于的元素,用暴力解法就是找到随便一个端点元素,然后往前往后线性遍历,极端时间复杂度还是O(N),这里用进阶二分的套路(等下总结)

class Solution {
public:vector<int> searchRange(vector<int>& nums, int target) {int size = nums.size();if(size == 0) // 处理边界return {-1, -1}; //返回一个vector里两个整数的方式int left = 0, right = size - 1; // 找左端点while(left < right) // 一定是小于{int mid = left + (right - left) / 2; // 元素个数是偶数时,中点是中间的左边if(nums[mid] < target) // 左端点肯定不在左边left = mid + 1;elseright = mid; // 可能自己是左端点,可能左端点还在左边}if(nums[left] != target) // 没有端点的情况return {-1, -1};int tmp = left; // 记录左端点right = size - 1; // 找右端点,left不用重置while(left < right){int mid = left + (right - left + 1) / 2; // 元素个数是偶数时,中点是中间的右边if(nums[mid] > target) // 右端点肯定右在左边right = mid -1;elseleft = mid; // 可能自己是右端点,可能右端点还在右边}return {tmp, right};}
};

以后二分大部分题目都是这个进阶二分的套路,套路就是这样的了(注意两个while的比较):

        int left = 0, right = size - 1; // 找左端点while(left < right) // 一定是小于{int mid = left + (right - left) / 2; // 元素个数是偶数时,中点是中间的左边if(nums[mid] < target) // 左端点肯定不在左边left = mid + 1;elseright = mid; // 可能自己是左端点,可能左端点还在左边}if(nums[left] != target) // 没有端点的情况return {-1, -1};int tmp = left; // 记录左端点right = size - 1; // 找右端点,left不用重置while(left < right){int mid = left + (right - left + 1) / 2; // 元素个数是偶数时,中点是中间的右边if(nums[mid] > target) // 右端点肯定右在左边right = mid -1;elseleft = mid; // 可能自己是右端点,可能右端点还在右边}return {tmp, right};

③力扣69. x 的平方根 

69. x 的平方根 - 力扣(LeetCode)

难度 简单

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

提示:

  • 0 <= x <= 2^31 - 1
class Solution {
public:int mySqrt(int x) {}
};

解析代码

暴力解法可以遍历1到X / 2的所有整数,因为这段整数是有序的,所有可以用二分算法,用上一题力扣34总结的进阶二分套路,求右端点:

class Solution {
public:int mySqrt(int x) {if(x <= 1) // 看给的范围处理边界{return x / 1; // 如果是1的话下面right就是0了}int left = 0, right = x / 2;while(left < right){long long mid = left + (right - left + 1) / 2;if(mid * mid > x) // 开long long防溢出{right = mid - 1;}else{left = mid;}}return right;}
};

④力扣35. 搜索插入位置

35. 搜索插入位置 - 力扣(LeetCode)

难度 简单

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

提示:

  • 1 <= nums.length <= 10^4
  • -10^4 <= nums[i] <= 10^4
  • nums 为 无重复元素 的 升序 排列数组
  • -10^4 <= target <= 10^4
class Solution {
public:int searchInsert(vector<int>& nums, int target) {}
};

解析代码

明显的二分查找,且找左端点:

class Solution {
public:int searchInsert(vector<int>& nums, int target) {int left = 0, right = nums.size() - 1;if(nums[right] < target) // 找不到就尾插{return right + 1;}while(left < right) // 找不到target就找一个比target大的值,插入到它的前面{int mid = left + (right - left) / 2; // 根据上面注释用二分中找左端点的套路if(nums[mid] < target){left = mid + 1;}else{right = mid;}}return left; // 找没找到都是返回left下标}
};

⑤力扣852. 山脉数组的峰顶索引

852. 山脉数组的峰顶索引 - 力扣(LeetCode)

LCR 069. 山脉数组的峰顶索引 - 力扣(LeetCode)

难度 中等

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

提示:

  • 1 <= nums.length <= 10^4
  • -10^4 <= nums[i] <= 10^4
  • nums 为 无重复元素 的 升序 排列数组
  • -10^4 <= target <= 10^4
class Solution {
public:int searchInsert(vector<int>& nums, int target) {}
};

解析代码

虽然整个数组不是有序的,但是根据单调性可以分出二段性。这里利用二段性把mid归到递增部分,下面就是找右端点:

class Solution {
public:int peakIndexInMountainArray(vector<int>& arr) {// 虽然整个数组不是有序的,但是根据单调性可以分出二段性// 这里利用二段性把mid归到递增部分,下面就是找右端点:int left = 0, right = arr.size() - 1;while(left < right){int mid = left + (right - left + 1) / 2;if(arr[mid] < arr[mid - 1]) // 如果是递减部分{right = mid - 1;}else{left = mid;}}return left;}
};

⑥力扣162. 寻找峰值

162. 寻找峰值 - 力扣(LeetCode)

难度 中等

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞ 。

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

示例 1:

输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。

示例 2:

输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5 
解释:你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5, 其峰值元素为 6。

提示:

  • 1 <= nums.length <= 1000
  • -2^31 <= nums[i] <= 2^31 - 1
class Solution {
public:int findPeakElement(vector<int>& nums) {}
};

解析代码

        注意到是返回任意个峰值都可以,就类似数学的求极大值,那问题就变成上一题力扣852. 山脉数组的峰顶索引了,直接把nums参数改成arr然后复制上一题代码过来就AC了,二段性就是如果找到一个点,如果这个点的右边元素比它小,那么一定有一个极大值在它左边。反之极大值在它右边或者它就是极大值。

class Solution {
public:int findPeakElement(vector<int>& arr) {// 虽然整个数组不是有序的,但是根据单调性可以分出二段性// 这里利用二段性把mid归到递增部分,下面就是找右端点:int left = 0, right = arr.size() - 1;while(left < right){int mid = left + (right - left + 1) / 2;if(arr[mid] < arr[mid - 1]) // 如果是递减部分{right = mid - 1;}else{left = mid;}}return left;}
};

⑦力扣153. 寻找旋转排序数组中的最小值

153. 寻找旋转排序数组中的最小值 - 力扣(LeetCode)

难度 中等

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。

示例 2:

输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 3 次得到输入数组。

示例 3:

输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。

提示:

  • n == nums.length
  • 1 <= n <= 5000
  • -5000 <= nums[i] <= 5000
  • nums 中的所有整数 互不相同
  • nums 原来是一个升序排序的数组,并进行了 1 至 n 次旋转
class Solution {
public:int findMin(vector<int>& nums) {}
};

解析代码

 二段性就是以最右边元素(下图为D)为标志,如果一个点比它大,那么找的元素肯定在另一边,

以A为标志也行,但是有边界情况要处理,下面就以D为标志,找左端点:

class Solution {
public:int findMin(vector<int>& nums) {// 二段性就是以最右边元素为标志,如果一个点比它大,那么找的元素肯定在另一边// 以下就是二分找左端点的套路int left = 0, right = nums.size() - 1;int tmp = right;while(left < right){int mid = left + (right - left) / 2;if(nums[mid] > nums[tmp]) // 如果是递减部分{left = mid + 1;}else{right = mid;}}return nums[left];}
};

⑧力扣LCR 173. 点名

LCR 173. 点名 - 力扣(LeetCode)

难度 简单

某班级 n 位同学的学号为 0 ~ n-1。点名结果记录于升序数组 records。假定仅有一位同学缺席,请返回他的学号。

示例 1:

输入: records = [0,1,2,3,5]
输出: 4

示例 2:

输入: records = [0, 1, 2, 3, 4, 5, 6, 8]
输出: 7

提示:

1 <= records.length <= 10000

class Solution {
public:int takeAttendance(vector<int>& records) {}
};

解析代码

此题就是以前写过的剑指Offer中数组消失的数字,解法有哈希,遍历,位运算,数学求和,时间都是O(N),二分的解法是O(logN)。

二段性就是找的元素的值肯定不等于数组下标,求左端点的套路:

class Solution {
public:int takeAttendance(vector<int>& records) {// 解法有哈希,遍历,位运算,数学求和,时间都是O(N),二分的解法是O(logN)// 此题二段性就是找的元素的值肯定不等于数组下标,求左端点的套路int left = 0, right = records.size() - 1;if(records[right] == right){return right + 1;}while(left < right){int mid = left + (right - left) / 2;if(records[mid] == mid){left = mid + 1;}else{right = mid;}}return records[left] - 1;}
};

本篇完。

下一部分是前缀和算法。

这篇关于Offer必备算法_二分查找_八道力扣OJ题详解(由易到难)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652237

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装