Hadoop入门之自定义groupingcomparator和outputformat的使用

本文主要是介绍Hadoop入门之自定义groupingcomparator和outputformat的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自定义outputformat输出demo类:


/*** maptask或者reducetask在最终输出时,先调用OutputFormat的getRecordWriter方法拿到一个RecordWriter* 然后再调用RecordWriter的write(k,v)方法将数据写出* * @author* */
public class LogEnhanceOutputFormat extends FileOutputFormat<Text, NullWritable> {@Overridepublic RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {FileSystem fs = FileSystem.get(context.getConfiguration());Path enhancePath = new Path("D:/temp/en/log.dat");Path tocrawlPath = new Path("D:/temp/crw/url.dat");FSDataOutputStream enhancedOs = fs.create(enhancePath);FSDataOutputStream tocrawlOs = fs.create(tocrawlPath);return new EnhanceRecordWriter(enhancedOs, tocrawlOs);}/*** 构造一个自己的recordwriter* * @author* */static class EnhanceRecordWriter extends RecordWriter<Text, NullWritable> {FSDataOutputStream enhancedOs = null;FSDataOutputStream tocrawlOs = null;public EnhanceRecordWriter(FSDataOutputStream enhancedOs, FSDataOutputStream tocrawlOs) {super();this.enhancedOs = enhancedOs;this.tocrawlOs = tocrawlOs;}@Overridepublic void write(Text key, NullWritable value) throws IOException, InterruptedException {String result = key.toString();// 如果要写出的数据是待爬的url,则写入待爬清单文件 /logenhance/tocrawl/url.datif (result.contains("tocrawl")) {tocrawlOs.write(result.getBytes());} else {// 如果要写出的数据是增强日志,则写入增强日志文件 /logenhance/enhancedlog/log.datenhancedOs.write(result.getBytes());}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {if (tocrawlOs != null) {tocrawlOs.close();}if (enhancedOs != null) {enhancedOs.close();}}}}
使用这个类需要在Job设置中设置如下:

 job.setOutputFormatClass(LogEnhanceOutputFormat.class);


自定义groupingcomparator的使用Demo:

有如下订单数据

订单id

商品id

成交金额

Order_0000001

Pdt_01

222.8

Order_0000001

Pdt_05

25.8

Order_0000002

Pdt_03

522.8

Order_0000002

Pdt_04

122.4

Order_0000002

Pdt_05

722.4

Order_0000003

Pdt_01

222.8

 

现在需要求出每一个订单中成交金额最大的一笔交易


1、利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce

2、在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值


自定义groupingcomparator

/*** 用于控制shuffle过程中reduce端对kv对的聚合逻辑* @author duanhaitao@itcast.cn**/
public class ItemidGroupingComparator extends WritableComparator {protected ItemidGroupingComparator() {super(OrderBean.class, true);}@Overridepublic int compare(WritableComparable a, WritableComparable b) {OrderBean abean = (OrderBean) a;OrderBean bbean = (OrderBean) b;//将item_id相同的bean都视为相同,从而聚合为一组return abean.getItemid().compareTo(bbean.getItemid());}
}


/*** 订单信息bean,实现hadoop的序列化机制* @author duanhaitao@itcast.cn**/
public class OrderBean implements WritableComparable<OrderBean>{private Text itemid;private DoubleWritable amount;public OrderBean() {}public OrderBean(Text itemid, DoubleWritable amount) {set(itemid, amount);}public void set(Text itemid, DoubleWritable amount) {this.itemid = itemid;this.amount = amount;}public Text getItemid() {return itemid;}public DoubleWritable getAmount() {return amount;}
@Overridepublic int compareTo(OrderBean o) {int cmp = this.itemid.compareTo(o.getItemid());if (cmp == 0) {cmp = -this.amount.compareTo(o.getAmount());}return cmp;}@Overridepublic void write(DataOutput out) throws IOException {out.writeUTF(itemid.toString());out.writeDouble(amount.get());}@Overridepublic void readFields(DataInput in) throws IOException {String readUTF = in.readUTF();double readDouble = in.readDouble();this.itemid = new Text(readUTF);this.amount= new DoubleWritable(readDouble);}@Overridepublic String toString() {return itemid.toString() + "\t" + amount.get();}
}


/*** 利用secondarysort机制输出每种item订单金额最大的记录* @author duanhaitao@itcast.cn**/
public class SecondarySort {static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{
OrderBean bean = new OrderBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String line = value.toString();String[] fields = StringUtils.split(line, "\t");bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[1])));context.write(bean, NullWritable.get());}}static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{//在设置了groupingcomparator以后,这里收到的kv数据 就是:  <1001 87.6>,null  <1001 76.5>,null  .... //此时,reduce方法中的参数key就是上述kv组中的第一个kv的key:<1001 87.6>//要输出同一个item的所有订单中最大金额的那一个,就只要输出这个key@Overrideprotected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {context.write(key, NullWritable.get());}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(SecondarySort.class);job.setMapperClass(SecondarySortMapper.class);job.setReducerClass(SecondarySortReducer.class);job.setOutputKeyClass(OrderBean.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));//指定shuffle所使用的GroupingComparator类job.setGroupingComparatorClass(ItemidGroupingComparator.class);//指定shuffle所使用的partitioner类job.setPartitionerClass(ItemIdPartitioner.class);job.setNumReduceTasks(3);job.waitForCompletion(true);}}





这篇关于Hadoop入门之自定义groupingcomparator和outputformat的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/651590

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学