Hadoop入门之自定义groupingcomparator和outputformat的使用

本文主要是介绍Hadoop入门之自定义groupingcomparator和outputformat的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自定义outputformat输出demo类:


/*** maptask或者reducetask在最终输出时,先调用OutputFormat的getRecordWriter方法拿到一个RecordWriter* 然后再调用RecordWriter的write(k,v)方法将数据写出* * @author* */
public class LogEnhanceOutputFormat extends FileOutputFormat<Text, NullWritable> {@Overridepublic RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {FileSystem fs = FileSystem.get(context.getConfiguration());Path enhancePath = new Path("D:/temp/en/log.dat");Path tocrawlPath = new Path("D:/temp/crw/url.dat");FSDataOutputStream enhancedOs = fs.create(enhancePath);FSDataOutputStream tocrawlOs = fs.create(tocrawlPath);return new EnhanceRecordWriter(enhancedOs, tocrawlOs);}/*** 构造一个自己的recordwriter* * @author* */static class EnhanceRecordWriter extends RecordWriter<Text, NullWritable> {FSDataOutputStream enhancedOs = null;FSDataOutputStream tocrawlOs = null;public EnhanceRecordWriter(FSDataOutputStream enhancedOs, FSDataOutputStream tocrawlOs) {super();this.enhancedOs = enhancedOs;this.tocrawlOs = tocrawlOs;}@Overridepublic void write(Text key, NullWritable value) throws IOException, InterruptedException {String result = key.toString();// 如果要写出的数据是待爬的url,则写入待爬清单文件 /logenhance/tocrawl/url.datif (result.contains("tocrawl")) {tocrawlOs.write(result.getBytes());} else {// 如果要写出的数据是增强日志,则写入增强日志文件 /logenhance/enhancedlog/log.datenhancedOs.write(result.getBytes());}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {if (tocrawlOs != null) {tocrawlOs.close();}if (enhancedOs != null) {enhancedOs.close();}}}}
使用这个类需要在Job设置中设置如下:

 job.setOutputFormatClass(LogEnhanceOutputFormat.class);


自定义groupingcomparator的使用Demo:

有如下订单数据

订单id

商品id

成交金额

Order_0000001

Pdt_01

222.8

Order_0000001

Pdt_05

25.8

Order_0000002

Pdt_03

522.8

Order_0000002

Pdt_04

122.4

Order_0000002

Pdt_05

722.4

Order_0000003

Pdt_01

222.8

 

现在需要求出每一个订单中成交金额最大的一笔交易


1、利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce

2、在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值


自定义groupingcomparator

/*** 用于控制shuffle过程中reduce端对kv对的聚合逻辑* @author duanhaitao@itcast.cn**/
public class ItemidGroupingComparator extends WritableComparator {protected ItemidGroupingComparator() {super(OrderBean.class, true);}@Overridepublic int compare(WritableComparable a, WritableComparable b) {OrderBean abean = (OrderBean) a;OrderBean bbean = (OrderBean) b;//将item_id相同的bean都视为相同,从而聚合为一组return abean.getItemid().compareTo(bbean.getItemid());}
}


/*** 订单信息bean,实现hadoop的序列化机制* @author duanhaitao@itcast.cn**/
public class OrderBean implements WritableComparable<OrderBean>{private Text itemid;private DoubleWritable amount;public OrderBean() {}public OrderBean(Text itemid, DoubleWritable amount) {set(itemid, amount);}public void set(Text itemid, DoubleWritable amount) {this.itemid = itemid;this.amount = amount;}public Text getItemid() {return itemid;}public DoubleWritable getAmount() {return amount;}
@Overridepublic int compareTo(OrderBean o) {int cmp = this.itemid.compareTo(o.getItemid());if (cmp == 0) {cmp = -this.amount.compareTo(o.getAmount());}return cmp;}@Overridepublic void write(DataOutput out) throws IOException {out.writeUTF(itemid.toString());out.writeDouble(amount.get());}@Overridepublic void readFields(DataInput in) throws IOException {String readUTF = in.readUTF();double readDouble = in.readDouble();this.itemid = new Text(readUTF);this.amount= new DoubleWritable(readDouble);}@Overridepublic String toString() {return itemid.toString() + "\t" + amount.get();}
}


/*** 利用secondarysort机制输出每种item订单金额最大的记录* @author duanhaitao@itcast.cn**/
public class SecondarySort {static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{
OrderBean bean = new OrderBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String line = value.toString();String[] fields = StringUtils.split(line, "\t");bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[1])));context.write(bean, NullWritable.get());}}static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{//在设置了groupingcomparator以后,这里收到的kv数据 就是:  <1001 87.6>,null  <1001 76.5>,null  .... //此时,reduce方法中的参数key就是上述kv组中的第一个kv的key:<1001 87.6>//要输出同一个item的所有订单中最大金额的那一个,就只要输出这个key@Overrideprotected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {context.write(key, NullWritable.get());}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(SecondarySort.class);job.setMapperClass(SecondarySortMapper.class);job.setReducerClass(SecondarySortReducer.class);job.setOutputKeyClass(OrderBean.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));//指定shuffle所使用的GroupingComparator类job.setGroupingComparatorClass(ItemidGroupingComparator.class);//指定shuffle所使用的partitioner类job.setPartitionerClass(ItemIdPartitioner.class);job.setNumReduceTasks(3);job.waitForCompletion(true);}}





这篇关于Hadoop入门之自定义groupingcomparator和outputformat的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/651590

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis