PCL Kdtree 使用示例

2024-01-27 15:12
文章标签 使用 pcl 示例 kdtree

本文主要是介绍PCL Kdtree 使用示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PCL Kdtree 使用示例

文章目录

    • PCL Kdtree 使用示例
      • 一、关于 KDTree
      • 二、关于最近邻搜索
      • 三、复杂度分析
      • 四、C++代码示例
      • 五、关键函数说明
        • nearestKSearch 函数说明

一、关于 KDTree

  • 点云数据主要是, 表征 目标表面 的海量点集合, 并不具备传统实体网格数据的几何拓扑结构。
  • 点云数据处理中最为核心的问题就是, 建立离散点间的拓扑关系, 实现基于邻域关系的快速查找。
  • KDTree,即k-dimensional tree,是一种高维索引树形数据结构,常用于在大规模的高维数据空间进行最近邻查找(Nearest Neighbor)和近似最近邻查找(Approximate Nearest Neighbor),例如图像检索和识别中的高维图像特征向量的K近邻查找与匹配。
  • KDTree的每一级(level)在指定维度上分开所有的子节点。在树的根部,所有的子节点在第一个维度上被分开(第一维坐标小于根节点的点将被分在左边的子树中,大于根节点的点将被分在右边的子树中)。树的每一级都在下一个维度上分开,所有其他的维度用完之后就回到第一个维度,直到你准备分类的最后一个树仅仅由有一个元素组成

在这里插入图片描述

二、关于最近邻搜索

给定点p,查询数据集中与其距离最近点的过程即为最近邻搜索。
在这里插入图片描述

在这里插入图片描述

如在构建好的k-d tree上搜索(3,5)的最近邻时:

(1)首先从根节点(7,2)出发,将当前最近邻设为(7,2),对该k-d tree作深度优先遍历。以(3,5)为圆心,其到(7,2)的距离为半径画圆(多维空间为超球面),可以看出(8,1)右侧的区域与该圆不相交,所以(8,1)的右子树全部忽略。

(2) 接着走到(7,2)左子树根节点(5,4),与原最近邻对比距离后,更新当前最近邻为(5,4)。以(3,5)为圆心,其到(5,4)的距离为半径画圆,发现(7,2)右侧的区域与该圆不相交,忽略该侧所有节点,这样(7,2)的整个右子树被标记为已忽略。

(3) 遍历完(5,4)的左右叶子节点,发现与当前最优距离相等,不更新最近邻。所以(3,5)的最近邻为(5,4)。

三、复杂度分析

  • 新增节点:平均复杂度为O(logn),最坏复杂度O(n);
  • 删除节点:平均复杂度为O(logn),最坏复杂度O(n);
  • 最近邻搜索: 平均复杂度为O(logn) ,最坏复杂度O(n);

四、C++代码示例


#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <iostream>
#include <vector>
#include <ctime>int main (int argc, char**argv)
{srand (time (NULL));pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); // 创建一个PointCloud<PointXYZ> boost共享指针,并进行实例化为cloud// 随机生成一个1000个点的无序点云cloud->width =1000; // 注意因为cloud是指针,所以这里用->cloud->height =1;cloud->points.resize (cloud->width * cloud->height);for (size_t i=0; i< cloud->points.size (); ++i){cloud->points[i].x =1024.0f * rand () / (RAND_MAX + 1.0f);cloud->points[i].y =1024.0f * rand () / (RAND_MAX + 1.0f);cloud->points[i].z =1024.0f * rand () / (RAND_MAX + 1.0f);}pcl::KdTreeFLANN<pcl::PointXYZ>kdtree; // 创建k-d tree对象kdtree.setInputCloud (cloud); // 将cloud设为k-d tree是搜索空间// 随机生成查询点pcl::PointXYZ searchPoint;searchPoint.x=1024.0f * rand () / (RAND_MAX + 1.0f);searchPoint.y=1024.0f * rand () / (RAND_MAX + 1.0f);searchPoint.z=1024.0f * rand () / (RAND_MAX + 1.0f);int K =10;std::vector<int>pointIdxNKNSearch(K); // 设置一个整型的<vector>,用于存放第几近邻的索引std::vector<float>pointNKNSquaredDistance(K); // 设置一个浮点型的<vector>, 用于存放第几近邻与查询点的平方距离std::cout<<"K nearest neighbor search at ("<< searchPoint.x <<" "<< searchPoint.y <<" "<< searchPoint.z <<") with K="<< K <<std::endl;if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) >0 ) // 如果找到了近邻点{for (size_t i=0; i<pointIdxNKNSearch.size (); ++i){std::cout<<"    "<<   cloud->points[ pointIdxNKNSearch[i] ].x  <<" "<< cloud->points[pointIdxNKNSearch[i] ].y  <<" "<< cloud->points[pointIdxNKNSearch[i] ].z <<" (squared distance: "<<pointNKNSquaredDistance[i] <<")"<<std::endl;}}std::vector<int> pointIdxRadiusSearch;std::vector<float> pointRadiusSquaredDistance;float radius =256.0f * rand () / (RAND_MAX + 1.0f); // 设置半径阈值std::cout<<"Neighbors within radius search at ("<<searchPoint.x <<" "<<searchPoint.y<<" "<<searchPoint.z<<") with radius="<< radius <<std::endl;if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) >0 ){for (size_t i=0; i<pointIdxRadiusSearch.size (); ++i)std::cout<<"    "<<   cloud->points[ pointIdxRadiusSearch[i] ].x <<" "<< cloud->points[pointIdxRadiusSearch[i] ].y <<" "<< cloud->points[pointIdxRadiusSearch[i] ].z <<" (squared distance: "<<pointRadiusSquaredDistance[i] <<")"<<std::endl;}return 0;
}

五、关键函数说明

nearestKSearch 函数说明
/** \brief Search for k-nearest neighbors for the given query point.* * \attention This method does not do any bounds checking for the input index* (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.* * \param[in] point a given \a valid (i.e., finite) query point* \param[in] k the number of neighbors to search for* \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)* \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k * a priori!)* \return number of neighbors found* * \exception asserts in debug mode if the index is not between 0 and the maximum number of points*/
int
nearestKSearch (const PointT &point, int k,std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const override;
  • 第一个参数:要查询的点

  • 第二个参数:找top几最近邻

  • 第三个参数:一个vector,执行后这里面存放找到的top几最近邻的索引(也就是指点云数据集中的第几个点)

  • 第四个参数:一个vector,执行后这里面存放找到的top几最近邻到查询点的平方距离 这个函数返回找到的近邻点的数量

radiusSearch 函数说明

/** \brief Search for all the nearest neighbors of the query point in a given radius.* * \attention This method does not do any bounds checking for the input index* (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.* * \param[in] point a given \a valid (i.e., finite) query point* \param[in] radius the radius of the sphere bounding all of p_q's neighbors* \param[out] k_indices the resultant indices of the neighboring points* \param[out] k_sqr_distances the resultant squared distances to the neighboring points* \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to* 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be* returned.* \return number of neighbors found in radius** \exception asserts in debug mode if the index is not between 0 and the maximum number of points*/
int
radiusSearch (const PointT &point, double radius, std::vector<int> &k_indices,std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const override;
  • 第一个参数:要查询的点
  • 第二个参数:搜索半径阈值
  • 第三个参数:一个vector,执行后这里面存放找到的top几最近邻的索引(也就是指点云数据集中的第几个点)
  • 第四个参数:一个vector,执行后这里面存放找到的top几最近邻到查询点的平方距离
  • 第五个参数:最多找几个近邻。如果设置为0或者大于点云数据中的数据数量,则返回满足阈值的所偶近邻
  • 这个函数返回找到的近邻点的数量

这篇关于PCL Kdtree 使用示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/650621

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念