【ICer必备基础】MOS电容——电容电压特性详解

2024-01-27 08:10

本文主要是介绍【ICer必备基础】MOS电容——电容电压特性详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【ICer必备基础】MOS电容——电容电压特性详解

    • 1相关定义
    • 2MOS电容描述
    • 3MOS电容能带分析
    • 4可变电容实际应用

1相关定义

  MOS电容是集成电路中非常重要的应用,器件电容的定义为:

在这里插入图片描述
   阈值反型点: 当达到最大耗尽宽度且反型层电荷密度为零时的情形。此时得到最小电容 C m i n ′ C_{min}^{\prime} Cmin(下面将对该结果进行说明)
在这里插入图片描述

2MOS电容描述

在这里插入图片描述
  总的过程:
  当NMOS栅极加上一个很负的电压,衬底中空穴电荷被大量的吸引到氧化层界面,空穴堆积在氧化层表面,电容器的 “两极板” t o x t_{ox} tox 分离,此时MOS电容可以看作单位面积电容为 C o x C_{ox} Cox 的栅氧化层电容;随着 V G S V_{GS} VGS 上升,界面空穴密度下降,在氧化层下开始形成耗尽层,器件进入若反型区,此时电容为 C o x C_{ox} Cox C d e p C_{dep} Cdep 的串联。最后当 V G S V_{GS} VGS超过 V T H V_{TH} VTH 时,氧化层与衬底之间形成沟道,此时单位面积电容仍为 C o x C_{ox} Cox,特性如图1(b)

3MOS电容能带分析

  下面对MOS电容,进行更细致的讨论:
  MOS电容有三种工作状态:即堆积、耗尽和反型。以 N M O S NMOS NMOS 为例,如下图所示,在金属端加负偏压后形成的能带图,在栅氧化层-半导体界面产生可空穴堆积层,一个小的 d V dV dV 将导致金属栅极和空穴堆积电荷 d Q dQ dQ产生变化,如图10.23(b)所示,这种电荷密度的变化发生在栅氧化层的边缘,就像平板电容器一样。
  堆积模式时 M O S MOS MOS 电容器的单位面积电容 C ′ C_{}^{\prime} C 就是栅氧化层电容,即堆积模式下MOS主要表现为栅氧化层电容(栅电容)
在这里插入图片描述
在这里插入图片描述
  在栅极加正偏置电压,产生的能带图,如图下所示,从图中可以看出,栅极氧化层与P型半导体之间形成了耗尽区,此时栅氧化层与耗尽层电容等效成串联。栅极电压的微变dV将会导致空间电荷区宽度微分改变 t d t_d td,以及电荷密度微分改变,如图10.24(b)所示
  耗尽模式时MOS电容器的单位面积电容 C ′ C_{}^{\prime} C 等效为栅氧化层电容与耗尽区电容的串联,总的电容随着耗尽区的增大而减小,即耗尽模式下MOS主要表现为栅氧化层电容(栅电容)串耗尽电容

在这里插入图片描述
  将 C o x = ε o x / t o x C_{ox}=\varepsilon_{ox}/t_{ox} Cox=εox/tox C S D ′ = ε s / t d C_{SD}^{\prime}=\varepsilon_s/t_d CSD=εs/td带入上式,可以化简为
在这里插入图片描述
在这里插入图片描述
  随着正偏置电压的增大,能带图越过阈值反型点,反型时的MOS器件能带图如下所示。在理想情况下,MOS电压的一个微分变化 d V dV dV 将导致反型层电荷密度的微分变化。而空间电荷区宽度不变如图10.25(b)所示,若反型层电荷能跟得上电容电压的变化,则总的电容就是栅氧化层电容,即反型模式下MOS主要表现为栅氧化层电容
在这里插入图片描述
在这里插入图片描述
将三种模式进行汇总,图中虚线分别对对栅氧化层电容 C o x C_{ox} Cox 、扩散电容 C S D C_{SD} CSD和达到阈值反型点的最小扩散电容 C m i n ′ C_{min}^{\prime} Cmin进行标识。
在这里插入图片描述
  随着 V G S V_{GS} VGS 的上升,界面空穴密度下降,考虑 V G = 0 V_G=0 VG=0,此时在源漏两端的n型半导体与衬底之间也会形成耗尽区域,因此在强积累区域与 V G = 0 V_G=0 VG=0偏置电压之间,会存在总电容 C C C 的下降趋势;
  再次考虑阈值反型点与强反型区域之间的区域,到达阈值反型点时,耗尽层电容达到最小,反型层电荷为0
  栅极偏置电压继续增大,理想情况耗尽层宽度几乎不变,此时栅极正电压开始从衬底中吸引少子电子,开始沟道的形成过程,反型层的电子密度开始上升,进入中等反型区,此过程电子电荷密度对电压微分量dV的响应越来越少,直到最后,沟道形成,耗尽层内电荷对dV不响应,MOS进入强反型状态,此时MOS电容等效为栅电容,电容器的上级板为栅极,下极板为沟道连通的源极和漏极,中间有氧化层隔开,因此在到达阈值反型点与强反型区域,电容存在上升趋势;(可以这样理解,但是实际器件状态,可能略有偏差)
  同理可以得到n型衬底 MOS的电压-电容特性
在这里插入图片描述

4可变电容实际应用

  在可变电容应用中,一般需要电容值随着控制电压单调变化,因此可以将 N M O S NMOS NMOS 做在 N − w e l l N-well Nwell 里面,这样,器件将不会有反型区域,电容电压特性为单调变化,如图2所示。
在这里插入图片描述

这篇关于【ICer必备基础】MOS电容——电容电压特性详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649605

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2