第十四届蓝桥杯国赛 C++ B 组 C 题——班级活动(AC)

2024-01-26 18:04

本文主要是介绍第十四届蓝桥杯国赛 C++ B 组 C 题——班级活动(AC),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 班级活动
    • 1. 问题描述
    • 2. 输入格式
    • 3. 输出格式
    • 4. 样例输入
    • 5. 样例输出
    • 6. 样例说明
    • 7. 评测用例规模与约定
    • 8. 原题链接
  • 2. 解题思路
  • 3. AC_Code

1. 班级活动

前置知识点:思维,分类讨论

1. 问题描述

小明的老师准备组织一次班级活动。班上一共有 n n n 名 ( n n n 为偶数) 同学,老师想把所有的同学进行分组,每两名同学一组。为了公平,老师给每名同学随机分配了一个 n n n 以内的正整数作为 id \text{id} id,第 i i i 名同学的 id \text{id} id a i a_i ai

老师希望通过更改若干名同学的 id \text{id} id 使得对于任意一名同学 i i i,有且仅有另一名同学 j j j id \text{id} id 与其相同 ( a i = a j a_i = a_j ai=aj)。请问老师最少需要更改多少名同学的 id \text{id} id

2. 输入格式

输入共 2 2 2 行。

第一行为一个正整数 n n n

第二行为 n n n 个由空格隔开的整数 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an

3. 输出格式

输出共 1 1 1 行,一个整数。

4. 样例输入

4
1 2 2 3

5. 样例输出

1

6. 样例说明

仅需要把 a 1 a_1 a1 改为 3 3 3 或者把 a 3 a_3 a3 改为 1 1 1 即可。

7. 评测用例规模与约定

对于 20 % 20\% 20% 的数据,保证 n ≤ 1 0 3 n ≤ 10^3 n103

对于 100 % 100\% 100% 的数据,保证 n ≤ 1 0 5 n ≤ 10^5 n105

8. 原题链接

班级活动

2. 解题思路

首先明确一点,假设某个 id \text{id} id 的同学数量为 x ( x > 2 ) x(x>2) x(x>2),因为题目要求任意 id \text{id} id 只能有两名同学,所以一定会有 x − 2 x-2 x2 名同学修改自己的 id \text{id} id。我们可以计算出每个 id \text{id} id 需要修改自身的同学数量之和,并将这个数量设为 b b b,即满足:
b = ∑ i = 1 n max ⁡ ( 0 , a i − 2 ) b=\sum_{i=1}^{n}\max(0,a_i-2) b=i=1nmax(0,ai2)
还有一个特殊群体我们不能忽略,就是编号 id \text{id} id 唯一的同学,我们设这群同学的数量为 a a a。他们特殊在有可能需要修改自身 id \text{id} id,也有可能不需要,我们需要进行分类讨论。

  • b ≥ a b \ge a ba 时:

在这种情况下, id \text{id} id 唯一的 a a a 名同学是不需要修改自身 id \text{id} id 的。我们可以从 b b b 名同学中选出 a a a 名同学修改自身 id \text{id} id 去与 id \text{id} id 唯一的同学对应,剩下的 b − a b-a ba 名同学仍然是需要修改自身 id \text{id} id 的,所以答案即是 b b b

假设有一个 id \text{id} id 集合 A = { 1 , 2 , 3 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 5 } A= \lbrace1,2,3,4,4,4,4,5,5,5,5,5\rbrace A={1,2,3,4,4,4,4,5,5,5,5,5},此时 id \text{id} id 唯一的集合为 { 1 , 2 , 3 } \lbrace1,2,3\rbrace {1,2,3},必须修改的 id \text{id} id 集合为 { 4 , 4 , 5 , 5 , 5 } \lbrace4,4,5,5,5\rbrace {4,4,5,5,5}。我们只需要让后一个集合的 id \text{id} id 分别修改为 { 1 , 2 , 3 , 6 , 6 } \lbrace 1,2,3,6,6\rbrace {1,2,3,6,6} 即可符合要求。

  • b < a b<a b<a 时:

在这种情况下,部分 id \text{id} id 唯一的 a a a 名同学是需要修改自身 id \text{id} id 的。同样假设有一个 id \text{id} id 集合 A = { 1 , 2 , 3 , 4 , 5 , 5 , 5 , 5 , 5 , 5 , 6 , 7 } A=\lbrace1,2,3,4,5,5,5,5,5,5,6,7\rbrace A={1,2,3,4,5,5,5,5,5,5,6,7},此时 id \text{id} id 唯一的集合为 { 1 , 2 , 3 , 4 , 6 , 7 } \lbrace1,2,3,4,6,7\rbrace {1,2,3,4,6,7},必须修改的 id \text{id} id 集合为 { 5 , 5 , 5 , 5 } \lbrace5,5,5,5\rbrace {5,5,5,5}。按照同样策略,我们让必须修改的 id \text{id} id 集合与 id \text{id} id 唯一的集合对应上,即将必须修改的 id \text{id} id 集合变为 { 1 , 2 , 3 , 4 } \lbrace1,2,3,4\rbrace {1,2,3,4}

但此时仍然发现 id \text{id} id 唯一的集合剩余的两个 id \text{id} id { 6 , 7 } \lbrace6,7\rbrace {6,7},我们需要让他们它们一致,所以需要修改其中一个。

假设剩余 4 4 4 个呢?那我们需要修改 2 2 2 个。

假设剩余 8 8 8 个呢?那我们需要修改 4 4 4 个。

显然结论就是需要修改剩余 id \text{id} id 个数的一半,即这种情况下答案是:
a − b 2 + b \dfrac{a-b}{2}+b 2ab+b
小疑问:如果 a-b 为奇数怎么办?

结论: a − b a-b ab 一定为偶数。我们可以假设数组已经存在 c c c 对匹配好的 id \text{id} id,根据我们对 a , b a,b a,b 的定义,显然符合式子 a + b + 2 × c = n a+b+2\times c=n a+b+2×c=n。题目告知我们 n n n 一定为偶数,且 2 × c 2 \times c 2×c 也一定为偶数,那么 a + b a+b a+b 也一定为偶数,即说明 a , b a,b a,b 奇偶性一定相同,得证 a − b a-b ab 一定为偶数。

时间复杂度: O ( n ) O(n) O(n)

3. AC_Code

  • C++
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;int n;
int main()
{cin >> n;map<int, int> cnt;for (int i = 0; i < n; ++i){int x;cin >> x;cnt[x]++;}int a = 0, b = 0;for (auto [x, y] : cnt){if (y == 1){a++;}else if (y > 2){b += y - 2;}}if (b >= a){cout << b << '\n';}else{cout << (a - b) / 2 + b << '\n';}return 0;
}
  • Java
import java.util.*;public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();Map<Integer, Integer> cnt = new HashMap<>();for (int i = 0; i < n; ++i) {int x = sc.nextInt();cnt.put(x, cnt.getOrDefault(x, 0) + 1);}int a = 0, b = 0;for (Map.Entry<Integer, Integer> entry : cnt.entrySet()) {int y = entry.getValue();if (y == 1) {a++;} else if (y > 2) {b += y - 2;}}if (b >= a) {System.out.println(b);} else {System.out.println((a - b) / 2 + b);}}
}
  • Python
n = int(input())
line = list(map(int, input().split()))
cnt = {}
for i in range(n):x = line[i]if x in cnt:cnt[x] += 1else:cnt[x] = 1
a = 0
b = 0
for y in cnt.values():if y == 1:a += 1elif y > 2:b += y - 2
if b >= a:print(b)
else:print((a - b) // 2 + b)

这篇关于第十四届蓝桥杯国赛 C++ B 组 C 题——班级活动(AC)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/647617

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

C/C++通过IP获取局域网网卡MAC地址

《C/C++通过IP获取局域网网卡MAC地址》这篇文章主要为大家详细介绍了C++如何通过Win32API函数SendARP从IP地址获取局域网内网卡的MAC地址,感兴趣的小伙伴可以跟随小编一起学习一下... C/C++通过IP获取局域网网卡MAC地址通过win32 SendARP获取MAC地址代码#i

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(