C# OpenCvSharp Yolov8 Cls 图像分类

2024-01-26 16:30

本文主要是介绍C# OpenCvSharp Yolov8 Cls 图像分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

效果

项目

模型信息

代码

下载 


效果

项目

模型信息

Model Properties
-------------------------
date:2023-09-07T17:11:37.011156
description:Ultralytics YOLOv8n-cls model trained on ../datasets/imagenet
author:Ultralytics
task:classify
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:1
batch:1
imgsz:[640, 640]
names:{0: 'tench', 1: 'goldfish', 2: 'great_white_shark', 3: 'tiger_shark', 4: 'hammerhead', 5: 'electric_ray', 6: 'stingray', 7: 'cock', 8: 'hen', 9: 'ostrich', 10: 'brambling', 11: 'goldfinch', 12: 'house_finch', 13: 'junco', 14: 'indigo_bunting', 15: 'robin', 16: 'bulbul', 17: 'jay', 18: 'magpie', 19: 'chickadee', 20: 'water_ouzel', 21: 'kite', 22: 'bald_eagle', 23: 'vulture', 24: 'great_grey_owl', 25: 'European_fire_salamander', 26: 'common_newt', 27: 'eft', 28: 'spotted_salamander', 29: 'axolotl', 30: 'bullfrog', 31: 'tree_frog', 32: 'tailed_frog', 33: 'loggerhead', 34: 'leatherback_turtle', 35: 'mud_turtle', 36: 'terrapin', 37: 'box_turtle', 38: 'banded_gecko', 39: 'common_iguana', 40: 'American_chameleon', 41: 'whiptail', 42: 'agama', 43: 'frilled_lizard', 44: 'alligator_lizard', 45: 'Gila_monster', 46: 'green_lizard', 47: 'African_chameleon', 48: 'Komodo_dragon', 49: 'African_crocodile', 50: 'American_alligator', 51: 'triceratops', 52: 'thunder_snake', 53: 'ringneck_snake', 54: 'hognose_snake', 55: 'green_snake', 56: 'king_snake', 57: 'garter_snake', 58: 'water_snake', 59: 'vine_snake', 60: 'night_snake', 61: 'boa_constrictor', 62: 'rock_python', 63: 'Indian_cobra', 64: 'green_mamba', 65: 'sea_snake', 66: 'horned_viper', 67: 'diamondback', 68: 'sidewinder', 69: 'trilobite', 70: 'harvestman', 71: 'scorpion', 72: 'black_and_gold_garden_spider', 73: 'barn_spider', 74: 'garden_spider', 75: 'black_widow', 76: 'tarantula', 77: 'wolf_spider', 78: 'tick', 79: 'centipede', 80: 'black_grouse', 81: 'ptarmigan', 82: 'ruffed_grouse', 83: 'prairie_chicken', 84: 'peacock', 85: 'quail', 86: 'partridge', 87: 'African_grey', 88: 'macaw', 89: 'sulphur-crested_cockatoo', 90: 'lorikeet', 91: 'coucal', 92: 'bee_eater', 93: 'hornbill', 94: 'hummingbird', 95: 'jacamar', 96: 'toucan', 97: 'drake', 98: 'red-breasted_merganser', 99: 'goose', 100: 'black_swan', 101: 'tusker', 102: 'echidna', 103: 'platypus', 104: 'wallaby', 105: 'koala', 106: 'wombat', 107: 'jellyfish', 108: 'sea_anemone', 109: 'brain_coral', 110: 'flatworm', 111: 'nematode', 112: 'conch', 113: 'snail', 114: 'slug', 115: 'sea_slug', 116: 'chiton', 117: 'chambered_nautilus', 118: 'Dungeness_crab', 119: 'rock_crab', 120: 'fiddler_crab', 121: 'king_crab', 122: 'American_lobster', 123: 'spiny_lobster', 124: 'crayfish', 125: 'hermit_crab', 126: 'isopod', 127: 'white_stork', 128: 'black_stork', 129: 'spoonbill', 130: 'flamingo', 131: 'little_blue_heron', 132: 'American_egret', 133: 'bittern', 134: 'crane_(bird)', 135: 'limpkin', 136: 'European_gallinule', 137: 'American_coot', 138: 'bustard', 139: 'ruddy_turnstone', 140: 'red-backed_sandpiper', 141: 'redshank', 142: 'dowitcher', 143: 'oystercatcher', 144: 'pelican', 145: 'king_penguin', 146: 'albatross', 147: 'grey_whale', 148: 'killer_whale', 149: 'dugong', 150: 'sea_lion', 151: 'Chihuahua', 152: 'Japanese_spaniel', 153: 'Maltese_dog', 154: 'Pekinese', 155: 'Shih-Tzu', 156: 'Blenheim_spaniel', 157: 'papillon', 158: 'toy_terrier', 159: 'Rhodesian_ridgeback', 160: 'Afghan_hound', 161: 'basset', 162: 'beagle', 163: 'bloodhound', 164: 'bluetick', 165: 'black-and-tan_coonhound', 166: 'Walker_hound', 167: 'English_foxhound', 168: 'redbone', 169: 'borzoi', 170: 'Irish_wolfhound', 171: 'Italian_greyhound', 172: 'whippet', 173: 'Ibizan_hound', 174: 'Norwegian_elkhound', 175: 'otterhound', 176: 'Saluki', 177: 'Scottish_deerhound', 178: 'Weimaraner', 179: 'Staffordshire_bullterrier', 180: 'American_Staffordshire_terrier', 181: 'Bedlington_terrier', 182: 'Border_terrier', 183: 'Kerry_blue_terrier', 184: 'Irish_terrier', 185: 'Norfolk_terrier', 186: 'Norwich_terrier', 187: 'Yorkshire_terrier', 188: 'wire-haired_fox_terrier', 189: 'Lakeland_terrier', 190: 'Sealyham_terrier', 191: 'Airedale', 192: 'cairn', 193: 'Australian_terrier', 194: 'Dandie_Dinmont', 195: 'Boston_bull', 196: 'miniature_schnauzer', 197: 'giant_schnauzer', 198: 'standard_schnauzer', 199: 'Scotch_terrier', 200: 'Tibetan_terrier', 201: 'silky_terrier', 202: 'soft-coated_wheaten_terrier', 203: 'West_Highland_white_terrier', 204: 'Lhasa', 205: 'flat-coated_retriever', 206: 'curly-coated_retriever', 207: 'golden_retriever', 208: 'Labrador_retriever', 209: 'Chesapeake_Bay_retriever', 210: 'German_short-haired_pointer', 211: 'vizsla', 212: 'English_setter', 213: 'Irish_setter', 214: 'Gordon_setter', 215: 'Brittany_spaniel', 216: 'clumber', 217: 'English_springer', 218: 'Welsh_springer_spaniel', 219: 'cocker_spaniel', 220: 'Sussex_spaniel', 221: 'Irish_water_spaniel', 222: 'kuvasz', 223: 'schipperke', 224: 'groenendael', 225: 'malinois', 226: 'briard', 227: 'kelpie', 228: 'komondor', 229: 'Old_English_sheepdog', 230: 'Shetland_sheepdog', 231: 'collie', 232: 'Border_collie', 233: 'Bouvier_des_Flandres', 234: 'Rottweiler', 235: 'German_shepherd', 236: 'Doberman', 237: 'miniature_pinscher', 238: 'Greater_Swiss_Mountain_dog', 239: 'Bernese_mountain_dog', 240: 'Appenzeller', 241: 'EntleBucher', 242: 'boxer', 243: 'bull_mastiff', 244: 'Tibetan_mastiff', 245: 'French_bulldog', 246: 'Great_Dane', 247: 'Saint_Bernard', 248: 'Eskimo_dog', 249: 'malamute', 250: 'Siberian_husky', 251: 'dalmatian', 252: 'affenpinscher', 253: 'basenji', 254: 'pug', 255: 'Leonberg', 256: 'Newfoundland', 257: 'Great_Pyrenees', 258: 'Samoyed', 259: 'Pomeranian', 260: 'chow', 261: 'keeshond', 262: 'Brabancon_griffon', 263: 'Pembroke', 264: 'Cardigan', 265: 'toy_poodle', 266: 'miniature_poodle', 267: 'standard_poodle', 268: 'Mexican_hairless', 269: 'timber_wolf', 270: 'white_wolf', 271: 'red_wolf', 272: 'coyote', 273: 'dingo', 274: 'dhole', 275: 'African_hunting_dog', 276: 'hyena', 277: 'red_fox', 278: 'kit_fox', 279: 'Arctic_fox', 280: 'grey_fox', 281: 'tabby', 282: 'tiger_cat', 283: 'Persian_cat', 284: 'Siamese_cat', 285: 'Egyptian_cat', 286: 'cougar', 287: 'lynx', 288: 'leopard', 289: 'snow_leopard', 290: 'jaguar', 291: 'lion', 292: 'tiger', 293: 'cheetah', 294: 'brown_bear', 295: 'American_black_bear', 296: 'ice_bear', 297: 'sloth_bear', 298: 'mongoose', 299: 'meerkat', 300: 'tiger_beetle', 301: 'ladybug', 302: 'ground_beetle', 303: 'long-horned_beetle', 304: 'leaf_beetle', 305: 'dung_beetle', 306: 'rhinoceros_beetle', 307: 'weevil', 308: 'fly', 309: 'bee', 310: 'ant', 311: 'grasshopper', 312: 'cricket', 313: 'walking_stick', 314: 'cockroach', 315: 'mantis', 316: 'cicada', 317: 'leafhopper', 318: 'lacewing', 319: 'dragonfly', 320: 'damselfly', 321: 'admiral', 322: 'ringlet', 323: 'monarch', 324: 'cabbage_butterfly', 325: 'sulphur_butterfly', 326: 'lycaenid', 327: 'starfish', 328: 'sea_urchin', 329: 'sea_cucumber', 330: 'wood_rabbit', 331: 'hare', 332: 'Angora', 333: 'hamster', 334: 'porcupine', 335: 'fox_squirrel', 336: 'marmot', 337: 'beaver', 338: 'guinea_pig', 339: 'sorrel', 340: 'zebra', 341: 'hog', 342: 'wild_boar', 343: 'warthog', 344: 'hippopotamus', 345: 'ox', 346: 'water_buffalo', 347: 'bison', 348: 'ram', 349: 'bighorn', 350: 'ibex', 351: 'hartebeest', 352: 'impala', 353: 'gazelle', 354: 'Arabian_camel', 355: 'llama', 356: 'weasel', 357: 'mink', 358: 'polecat', 359: 'black-footed_ferret', 360: 'otter', 361: 'skunk', 362: 'badger', 363: 'armadillo', 364: 'three-toed_sloth', 365: 'orangutan', 366: 'gorilla', 367: 'chimpanzee', 368: 'gibbon', 369: 'siamang', 370: 'guenon', 371: 'patas', 372: 'baboon', 373: 'macaque', 374: 'langur', 375: 'colobus', 376: 'proboscis_monkey', 377: 'marmoset', 378: 'capuchin', 379: 'howler_monkey', 380: 'titi', 381: 'spider_monkey', 382: 'squirrel_monkey', 383: 'Madagascar_cat', 384: 'indri', 385: 'Indian_elephant', 386: 'African_elephant', 387: 'lesser_panda', 388: 'giant_panda', 389: 'barracouta', 390: 'eel', 391: 'coho', 392: 'rock_beauty', 393: 'anemone_fish', 394: 'sturgeon', 395: 'gar', 396: 'lionfish', 397: 'puffer', 398: 'abacus', 399: 'abaya', 400: 'academic_gown', 401: 'accordion', 402: 'acoustic_guitar', 403: 'aircraft_carrier', 404: 'airliner', 405: 'airship', 406: 'altar', 407: 'ambulance', 408: 'amphibian', 409: 'analog_clock', 410: 'apiary', 411: 'apron', 412: 'ashcan', 413: 'assault_rifle', 414: 'backpack', 415: 'bakery', 416: 'balance_beam', 417: 'balloon', 418: 'ballpoint', 419: 'Band_Aid', 420: 'banjo', 421: 'bannister', 422: 'barbell', 423: 'barber_chair', 424: 'barbershop', 425: 'barn', 426: 'barometer', 427: 'barrel', 428: 'barrow', 429: 'baseball', 430: 'basketball', 431: 'bassinet', 432: 'bassoon', 433: 'bathing_cap', 434: 'bath_towel', 435: 'bathtub', 436: 'beach_wagon', 437: 'beacon', 438: 'beaker', 439: 'bearskin', 440: 'beer_bottle', 441: 'beer_glass', 442: 'bell_cote', 443: 'bib', 444: 'bicycle-built-for-two', 445: 'bikini', 446: 'binder', 447: 'binoculars', 448: 'birdhouse', 449: 'boathouse', 450: 'bobsled', 451: 'bolo_tie', 452: 'bonnet', 453: 'bookcase', 454: 'bookshop', 455: 'bottlecap', 456: 'bow', 457: 'bow_tie', 458: 'brass', 459: 'brassiere', 460: 'breakwater', 461: 'breastplate', 462: 'broom', 463: 'bucket', 464: 'buckle', 465: 'bulletproof_vest', 466: 'bullet_train', 467: 'butcher_shop', 468: 'cab', 469: 'caldron', 470: 'candle', 471: 'cannon', 472: 'canoe', 473: 'can_opener', 474: 'cardigan', 475: 'car_mirror', 476: 'carousel', 477: "carpenter's_kit", 478: 'carton', 479: 'car_wheel', 480: 'cash_machine', 481: 'cassette', 482: 'cassette_player', 483: 'castle', 484: 'catamaran', 485: 'CD_player', 486: 'cello', 487: 'cellular_telephone', 488: 'chain', 489: 'chainlink_fence', 490: 'chain_mail', 491: 'chain_saw', 492: 'chest', 493: 'chiffonier', 494: 'chime', 495: 'china_cabinet', 496: 'Christmas_stocking', 497: 'church', 498: 'cinema', 499: 'cleaver', 500: 'cliff_dwelling', 501: 'cloak', 502: 'clog', 503: 'cocktail_shaker', 504: 'coffee_mug', 505: 'coffeepot', 506: 'coil', 507: 'combination_lock', 508: 'computer_keyboard', 509: 'confectionery', 510: 'container_ship', 511: 'convertible', 512: 'corkscrew', 513: 'cornet', 514: 'cowboy_boot', 515: 'cowboy_hat', 516: 'cradle', 517: 'crane_(machine)', 518: 'crash_helmet', 519: 'crate', 520: 'crib', 521: 'Crock_Pot', 522: 'croquet_ball', 523: 'crutch', 524: 'cuirass', 525: 'dam', 526: 'desk', 527: 'desktop_computer', 528: 'dial_telephone', 529: 'diaper', 530: 'digital_clock', 531: 'digital_watch', 532: 'dining_table', 533: 'dishrag', 534: 'dishwasher', 535: 'disk_brake', 536: 'dock', 537: 'dogsled', 538: 'dome', 539: 'doormat', 540: 'drilling_platform', 541: 'drum', 542: 'drumstick', 543: 'dumbbell', 544: 'Dutch_oven', 545: 'electric_fan', 546: 'electric_guitar', 547: 'electric_locomotive', 548: 'entertainment_center', 549: 'envelope', 550: 'espresso_maker', 551: 'face_powder', 552: 'feather_boa', 553: 'file', 554: 'fireboat', 555: 'fire_engine', 556: 'fire_screen', 557: 'flagpole', 558: 'flute', 559: 'folding_chair', 560: 'football_helmet', 561: 'forklift', 562: 'fountain', 563: 'fountain_pen', 564: 'four-poster', 565: 'freight_car', 566: 'French_horn', 567: 'frying_pan', 568: 'fur_coat', 569: 'garbage_truck', 570: 'gasmask', 571: 'gas_pump', 572: 'goblet', 573: 'go-kart', 574: 'golf_ball', 575: 'golfcart', 576: 'gondola', 577: 'gong', 578: 'gown', 579: 'grand_piano', 580: 'greenhouse', 581: 'grille', 582: 'grocery_store', 583: 'guillotine', 584: 'hair_slide', 585: 'hair_spray', 586: 'half_track', 587: 'hammer', 588: 'hamper', 589: 'hand_blower', 590: 'hand-held_computer', 591: 'handkerchief', 592: 'hard_disc', 593: 'harmonica', 594: 'harp', 595: 'harvester', 596: 'hatchet', 597: 'holster', 598: 'home_theater', 599: 'honeycomb', 600: 'hook', 601: 'hoopskirt', 602: 'horizontal_bar', 603: 'horse_cart', 604: 'hourglass', 605: 'iPod', 606: 'iron', 607: "jack-o'-lantern", 608: 'jean', 609: 'jeep', 610: 'jersey', 611: 'jigsaw_puzzle', 612: 'jinrikisha', 613: 'joystick', 614: 'kimono', 615: 'knee_pad', 616: 'knot', 617: 'lab_coat', 618: 'ladle', 619: 'lampshade', 620: 'laptop', 621: 'lawn_mower', 622: 'lens_cap', 623: 'letter_opener', 624: 'library', 625: 'lifeboat', 626: 'lighter', 627: 'limousine', 628: 'liner', 629: 'lipstick', 630: 'Loafer', 631: 'lotion', 632: 'loudspeaker', 633: 'loupe', 634: 'lumbermill', 635: 'magnetic_compass', 636: 'mailbag', 637: 'mailbox', 638: 'maillot_(tights)', 639: 'maillot_(tank_suit)', 640: 'manhole_cover', 641: 'maraca', 642: 'marimba', 643: 'mask', 644: 'matchstick', 645: 'maypole', 646: 'maze', 647: 'measuring_cup', 648: 'medicine_chest', 649: 'megalith', 650: 'microphone', 651: 'microwave', 652: 'military_uniform', 653: 'milk_can', 654: 'minibus', 655: 'miniskirt', 656: 'minivan', 657: 'missile', 658: 'mitten', 659: 'mixing_bowl', 660: 'mobile_home', 661: 'Model_T', 662: 'modem', 663: 'monastery', 664: 'monitor', 665: 'moped', 666: 'mortar', 667: 'mortarboard', 668: 'mosque', 669: 'mosquito_net', 670: 'motor_scooter', 671: 'mountain_bike', 672: 'mountain_tent', 673: 'mouse', 674: 'mousetrap', 675: 'moving_van', 676: 'muzzle', 677: 'nail', 678: 'neck_brace', 679: 'necklace', 680: 'nipple', 681: 'notebook', 682: 'obelisk', 683: 'oboe', 684: 'ocarina', 685: 'odometer', 686: 'oil_filter', 687: 'organ', 688: 'oscilloscope', 689: 'overskirt', 690: 'oxcart', 691: 'oxygen_mask', 692: 'packet', 693: 'paddle', 694: 'paddlewheel', 695: 'padlock', 696: 'paintbrush', 697: 'pajama', 698: 'palace', 699: 'panpipe', 700: 'paper_towel', 701: 'parachute', 702: 'parallel_bars', 703: 'park_bench', 704: 'parking_meter', 705: 'passenger_car', 706: 'patio', 707: 'pay-phone', 708: 'pedestal', 709: 'pencil_box', 710: 'pencil_sharpener', 711: 'perfume', 712: 'Petri_dish', 713: 'photocopier', 714: 'pick', 715: 'pickelhaube', 716: 'picket_fence', 717: 'pickup', 718: 'pier', 719: 'piggy_bank', 720: 'pill_bottle', 721: 'pillow', 722: 'ping-pong_ball', 723: 'pinwheel', 724: 'pirate', 725: 'pitcher', 726: 'plane', 727: 'planetarium', 728: 'plastic_bag', 729: 'plate_rack', 730: 'plow', 731: 'plunger', 732: 'Polaroid_camera', 733: 'pole', 734: 'police_van', 735: 'poncho', 736: 'pool_table', 737: 'pop_bottle', 738: 'pot', 739: "potter's_wheel", 740: 'power_drill', 741: 'prayer_rug', 742: 'printer', 743: 'prison', 744: 'projectile', 745: 'projector', 746: 'puck', 747: 'punching_bag', 748: 'purse', 749: 'quill', 750: 'quilt', 751: 'racer', 752: 'racket', 753: 'radiator', 754: 'radio', 755: 'radio_telescope', 756: 'rain_barrel', 757: 'recreational_vehicle', 758: 'reel', 759: 'reflex_camera', 760: 'refrigerator', 761: 'remote_control', 762: 'restaurant', 763: 'revolver', 764: 'rifle', 765: 'rocking_chair', 766: 'rotisserie', 767: 'rubber_eraser', 768: 'rugby_ball', 769: 'rule', 770: 'running_shoe', 771: 'safe', 772: 'safety_pin', 773: 'saltshaker', 774: 'sandal', 775: 'sarong', 776: 'sax', 777: 'scabbard', 778: 'scale', 779: 'school_bus', 780: 'schooner', 781: 'scoreboard', 782: 'screen', 783: 'screw', 784: 'screwdriver', 785: 'seat_belt', 786: 'sewing_machine', 787: 'shield', 788: 'shoe_shop', 789: 'shoji', 790: 'shopping_basket', 791: 'shopping_cart', 792: 'shovel', 793: 'shower_cap', 794: 'shower_curtain', 795: 'ski', 796: 'ski_mask', 797: 'sleeping_bag', 798: 'slide_rule', 799: 'sliding_door', 800: 'slot', 801: 'snorkel', 802: 'snowmobile', 803: 'snowplow', 804: 'soap_dispenser', 805: 'soccer_ball', 806: 'sock', 807: 'solar_dish', 808: 'sombrero', 809: 'soup_bowl', 810: 'space_bar', 811: 'space_heater', 812: 'space_shuttle', 813: 'spatula', 814: 'speedboat', 815: 'spider_web', 816: 'spindle', 817: 'sports_car', 818: 'spotlight', 819: 'stage', 820: 'steam_locomotive', 821: 'steel_arch_bridge', 822: 'steel_drum', 823: 'stethoscope', 824: 'stole', 825: 'stone_wall', 826: 'stopwatch', 827: 'stove', 828: 'strainer', 829: 'streetcar', 830: 'stretcher', 831: 'studio_couch', 832: 'stupa', 833: 'submarine', 834: 'suit', 835: 'sundial', 836: 'sunglass', 837: 'sunglasses', 838: 'sunscreen', 839: 'suspension_bridge', 840: 'swab', 841: 'sweatshirt', 842: 'swimming_trunks', 843: 'swing', 844: 'switch', 845: 'syringe', 846: 'table_lamp', 847: 'tank', 848: 'tape_player', 849: 'teapot', 850: 'teddy', 851: 'television', 852: 'tennis_ball', 853: 'thatch', 854: 'theater_curtain', 855: 'thimble', 856: 'thresher', 857: 'throne', 858: 'tile_roof', 859: 'toaster', 860: 'tobacco_shop', 861: 'toilet_seat', 862: 'torch', 863: 'totem_pole', 864: 'tow_truck', 865: 'toyshop', 866: 'tractor', 867: 'trailer_truck', 868: 'tray', 869: 'trench_coat', 870: 'tricycle', 871: 'trimaran', 872: 'tripod', 873: 'triumphal_arch', 874: 'trolleybus', 875: 'trombone', 876: 'tub', 877: 'turnstile', 878: 'typewriter_keyboard', 879: 'umbrella', 880: 'unicycle', 881: 'upright', 882: 'vacuum', 883: 'vase', 884: 'vault', 885: 'velvet', 886: 'vending_machine', 887: 'vestment', 888: 'viaduct', 889: 'violin', 890: 'volleyball', 891: 'waffle_iron', 892: 'wall_clock', 893: 'wallet', 894: 'wardrobe', 895: 'warplane', 896: 'washbasin', 897: 'washer', 898: 'water_bottle', 899: 'water_jug', 900: 'water_tower', 901: 'whiskey_jug', 902: 'whistle', 903: 'wig', 904: 'window_screen', 905: 'window_shade', 906: 'Windsor_tie', 907: 'wine_bottle', 908: 'wing', 909: 'wok', 910: 'wooden_spoon', 911: 'wool', 912: 'worm_fence', 913: 'wreck', 914: 'yawl', 915: 'yurt', 916: 'web_site', 917: 'comic_book', 918: 'crossword_puzzle', 919: 'street_sign', 920: 'traffic_light', 921: 'book_jacket', 922: 'menu', 923: 'plate', 924: 'guacamole', 925: 'consomme', 926: 'hot_pot', 927: 'trifle', 928: 'ice_cream', 929: 'ice_lolly', 930: 'French_loaf', 931: 'bagel', 932: 'pretzel', 933: 'cheeseburger', 934: 'hotdog', 935: 'mashed_potato', 936: 'head_cabbage', 937: 'broccoli', 938: 'cauliflower', 939: 'zucchini', 940: 'spaghetti_squash', 941: 'acorn_squash', 942: 'butternut_squash', 943: 'cucumber', 944: 'artichoke', 945: 'bell_pepper', 946: 'cardoon', 947: 'mushroom', 948: 'Granny_Smith', 949: 'strawberry', 950: 'orange', 951: 'lemon', 952: 'fig', 953: 'pineapple', 954: 'banana', 955: 'jackfruit', 956: 'custard_apple', 957: 'pomegranate', 958: 'hay', 959: 'carbonara', 960: 'chocolate_sauce', 961: 'dough', 962: 'meat_loaf', 963: 'pizza', 964: 'potpie', 965: 'burrito', 966: 'red_wine', 967: 'espresso', 968: 'cup', 969: 'eggnog', 970: 'alp', 971: 'bubble', 972: 'cliff', 973: 'coral_reef', 974: 'geyser', 975: 'lakeside', 976: 'promontory', 977: 'sandbar', 978: 'seashore', 979: 'valley', 980: 'volcano', 981: 'ballplayer', 982: 'groom', 983: 'scuba_diver', 984: 'rapeseed', 985: 'daisy', 986: "yellow_lady's_slipper", 987: 'corn', 988: 'acorn', 989: 'hip', 990: 'buckeye', 991: 'coral_fungus', 992: 'agaric', 993: 'gyromitra', 994: 'stinkhorn', 995: 'earthstar', 996: 'hen-of-the-woods', 997: 'bolete', 998: 'ear', 999: 'toilet_tissue'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 1000]
---------------------------------------------------------------

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Text;
using System.Windows.Forms;namespace OpenCvSharp_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;ClasResult result_pro;Mat result_mat;Mat result_image;Mat result_mat_to_float;Net opencv_net;Mat BN_image;float[] result_array;int max_image_length;Mat max_image;Rect roi;KeyValuePair<string, float> result_cls;StringBuilder sb = new StringBuilder();private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\yolov8m-cls.onnx";classer_path = startupPath + "\\yolov8-cls-lable.txt";result_pro = new ClasResult(classer_path);//初始化网络类,读取本地模型opencv_net = CvDnn.ReadNetFromOnnx(model_path);result_array = new float[1000];image_path = "demo_2.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}//缩放图片max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));//数据归一化处理BN_image = CvDnn.BlobFromImage(max_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);//配置图片输入数据opencv_net.SetInput(BN_image);dt1 = DateTime.Now;//模型推理,读取推理结果result_mat = opencv_net.Forward();dt2 = DateTime.Now;//将推理结果转为float数据类型result_mat_to_float = new Mat(1, 1000, MatType.CV_32F, result_mat.Data);//将数据读取到数组中result_mat_to_float.GetArray<float>(out result_array);result_cls = result_pro.process_result(result_array);result_image = result_pro.draw_result(result_cls, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());sb.Clear();sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");sb.AppendLine("------------------------------");sb.AppendLine(string.Format("{0}:{1}", result_cls.Key, result_cls.Value.ToString("0.00")));textBox1.Text = sb.ToString();}else{textBox1.Text = "无信息";}}}
}

下载 

Demo下载

这篇关于C# OpenCvSharp Yolov8 Cls 图像分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/647381

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单