Java中byte转int类型为什么要amp;amp;amp;amp;amp;0xFF?

2024-01-26 03:10
文章标签 java 类型 int byte amp 0xff

本文主要是介绍Java中byte转int类型为什么要amp;amp;amp;amp;amp;0xFF?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天查看代码,翻到MD5加密代码,如下:

public String getMD5(String source) throws Exception {StringBuilder sb = new StringBuilder();byte[] output = MessageDigest.getInstance("MD5").digest(source.getBytes("utf-8"));for (int i = 0; i < output.length; i++) {int c = output[i] & 0xFF;if (c < 16) {sb.append("0");}sb.append(Integer.toHexString(c));}return sb.toString();}int c = output[i] & 0xFF;if (c < 16) {sb.append("0");}sb.append(Integer.toHexString(c));}return sb.toString();}

为什么要&0xFF ?

 

各种查资料,了解到,计算机中存储都是利用二进制的补码存储的,存储数据机制:正数存储的二进制原码,负数存储的是二进制的补码。  补码是负数的绝对值反码加1。

计算机为什么用补码存储数据,当我们明白这个问题后,就可以去理解另一个衍生问题——数据溢出

首先我们看一段数据溢出的Java代码:

/*char是无符号数,16位存储,表示范围是0~2^16-1(即0~65535)*/
char ch = Character.MAX_VALUE; // ch为65535
ch += (char) 1; // 加1后,引起数据溢出,则ch为0/*int是有符号数,32位存储,表示范围是-2^31~2^31-1(即-2147483648~2147483647)*/
int i = Integer.MAX_VALUE; // i为2147483647
i += 1; // 加1后,引起数据溢出,则i为-2147483648

为什么要使用原码,反码,补码 ?

 

【加法器】计算机只有加法器没有减法器(计算机只能识别0和1,也就是高点平和低电平,最底层的运算就是0和1的各种数学运算,也就是二进制运算,又因为组成最基本的输入输出的逻辑门实现二进制加法最简单,所以所有的数学运算都是建立在加法基础上再通添加各种逻辑门来改进的),两个数的减法运算会被计算机转换为加法运算。目的:为了简化计算机基本运算电路,使加减法都只需要用过加法电路实现,也就是让减去一个整数或加上一个负数这样的运算可以用加上一个整数来代替。于是改变负数存储的形式,存储成一种可以直接当成正数来相加的形式,这种形式就是补码。

模数】模数从物理意义上讲是某种计量器的容量。经常举的一个例子就是钟表,其模数是12,即每到12就重新从0开始,数学上叫取模或者求余(mod)。java中用%表示求余,例如 14 % 12  = 2。如果此时的正确时间为6点,而你的手表指向的是8点,要把表对准,有两种方法:一是把表逆时针拨两小时;二是把表顺时针拨10小时。

即8-2=6,(8+10)%12 =6

也就是说在此模数系统里面有8-2=8+10

这是因为2跟10对模数12互为补数。因此有以下结论:在模数系统,A-B或A+(-B)等价于A+[B补],

即8-2或8+(-2)=8+10

我们把10叫做-2在模12下的补码。我们把补码表示法(two's complement representation)所表示的四位存储单

元,按照从0000到1111递增,均匀分布在时钟的表盘上。如下图所示:

顺时针方向为加法,逆时针方向为减法

模为2^n:在1111处顺时针拨一格,就到了0000。用数学的方式,即1111+1=10000,进位舍弃则结果为0000。那么四位存储的模就是10000(2^4),这样用补码来表示负数就可以将加减法统一成加法来运算,简化了运算的复杂的程度。

减法转换为加法:3-1=3+(-1)=0011+1111=0010,到这里有人就有疑问了,0011+1111明明等于10010,怎么会是0010呢?还记得之前提过的最高位进位舍弃嘛,因此对于4位存储来说,进位舍弃就是0010=2。

数据溢出:当0111(7)加1时,按照我们人的思维来说,应该结果为8,但是对于机器来说则不是,因为0111(7)是四位存储所能表示的最大符号数,所以它是无法表示01000(8)的,这个时候我们就说数据溢出了。机器的思考方式显然和我们人脑不一样,机器按照上面环形图的方式,由于0111(7)加1时顺时针造成的数据溢出,那么我们可以把机器的操作想象成在0111(7)处顺时针拨了一格,我们再去对照下环形图发现这个时候指向了1000(-8)。这个过程想象成拨时针就OK了,对于1000(-8)减1也是同样的道理。

 

至此,我们完全可以总结一下:

1、计算机只有加法器没有减法器,两个数的减法运算会被计算机转换为加法运算,而补码正好能够解决减法转换为加法的问题。

2、防止机器发生零重码,同时解决了原码和反码不能表示-8的问题,这样极大的简化了计算机的硬件设计。

3、以循环的方式解决数据溢出的问题

 

现在我们回归到正题:

1byte = 1字节 = 8bit ,1int = 4字节 = 32bit

比如-12,[0000 1100]原  ,[1111 0011]反  ,[1111 0100]补码

byte-->int,就是8位变成32位

系统检测到byte转int进行运算时,按符号位补位,高位全部补1:  1111 1111 1111 1111 1111 1111 1111 0100

0xFF的二进制表示:1111 1111 ,高位全部补0: 0000 0000 0000 0000 0000 0000 1111 1111

-12的补码与0xFF进行与(&)操作最后就是:  0000 0000 0000 0000 0000 0000 1111 0100(十进制是244)

 

当从数字类型扩展到较宽的类型时,补零扩展还是补符号位扩展。由于Java只有有符号数,当byte扩展到short, int时,即正数都一样,因为符号位是0,所以无论如何都是补零扩展,但负数补零扩展和按符号位扩展结果完全不同。

byte[] a = new byte[10];
a[0]= -127;
int c = a[0]&0xff;

补符号数,原数值不变。

原码:1111 1111    补码:1000 0001  转成int类型,高位补1: 1111 1111 1111 1111 1111 1111 1000 0001 这个32位二进制补码表示的也是-127,显然这个两个补码表示的十进制数字依然是相同。

补零时,相当于把有符号数看成无符号数。比如-127 = 0x81,看成无符号数就是129

原码:1111 1111  补码:1000 0001 转成int类型,高位补0 : 0000 0000 0000 0000 0000 0000 1000 0001 这个32位二进制补码表示的是129

也就是说,byte转int类型时,自动转型是按符号位扩展的,这样能保证十进制的数值不会变,而&0xFF是补0扩展,这样能保证二进制存储的一致性,但是十进制数值已经发生变化了。而正数可以说是既按符号位扩展,又是补0扩展,所以在二进制存储和十进制数值上都能保证一致。

 

参考:

https://www.jianshu.com/p/63cc96758d20

http://www.cnblogs.com/think-in-java/p/5527389.html

https://blog.csdn.net/xmc281141947/article/details/74740061

 

 

 

这篇关于Java中byte转int类型为什么要amp;amp;amp;amp;amp;0xFF?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645463

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏