用Camshift算法对指定目标进行跟踪

2024-01-25 15:38

本文主要是介绍用Camshift算法对指定目标进行跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

Camshift算法是Continuously Adaptive Mean Shift algorithm的简称。

它是一个基于MeanSift的改进算法。它首次由Gary R.Bradski等人提出和应用在人脸的跟踪上,并取得了不错的效果。因为它是利用颜色的概率信息进行的跟踪。使得它的执行效率比較高。 Camshift算法的过程由以下步骤组成:

(1)确定初始目标及其区域;

(2)计算出目标的色度(Hue)分量的直方图;

(3)利用直方图计算输入图像的反向投影图(后面做进一步的解释);

(4)利用MeanShift算法在反向投影图中迭代收索,直到其收敛或达到最大迭代次数。并保存零次矩。

(5)从第(4)步中获得收索窗体的中心位置和计算出新的窗体大小。以此为參数,进入到下一幀的目标跟踪。(即跳转到第(2)步);

代码

#include "stdafx.h"
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"#include <iostream>
#include <ctype.h>using namespace cv;
using namespace std;Mat image;bool backprojMode = false;
bool selectObject = false;
int trackObject = 0;
bool showHist = true;
Point origin;
Rect selection(0,0,50,50);static void onMouse( int event, int x, int y, int, void* )
{switch( event ){case CV_EVENT_LBUTTONDOWN:origin = Point(x,y);selection = Rect(x,y,0,0);selectObject = true;break;case CV_EVENT_LBUTTONUP:selectObject = false;if( selection.width > 0 && selection.height > 0 )trackObject = -1;break;}if( selectObject ){selection.x = MIN(x, origin.x);selection.y = MIN(y, origin.y);selection.width = std::abs(x - origin.x);selection.height = std::abs(y - origin.y);}
}int main( int argc, const char** argv )
{cv::VideoCapture capture(0);capture.set( CV_CAP_PROP_FRAME_WIDTH,640);capture.set( CV_CAP_PROP_FRAME_HEIGHT,480 );if(!capture.isOpened())return -1;double rate = capture.get(CV_CAP_PROP_FPS);		//获取帧率int delay = 1000 / rate;	//计算帧间延迟;Mat frame,image,hsv,mask,hue;namedWindow("test",CV_WINDOW_AUTOSIZE);setMouseCallback("test",onMouse,0);while (1){capture>>frame;if(trackObject == -1){ //设置完检測的对象后開始跟踪frame.copyTo(image);cv::cvtColor(image,hsv,CV_RGB2HSV); cv::inRange(hsv,Scalar(0,130,50),Scalar(180,256,256),mask);	//去掉低饱和度的点vector<cv::Mat> v;cv::split(hsv,v);			//hsv的三个通道分开hue = v[1];cv::Mat ROI = hue(selection);	//选择感兴趣的区域cv::Mat maskROI = mask(selection);cv::MatND hist;int histsize[1];histsize[0]= 16;float hranges[2];hranges[0] = 0;hranges[1] = 180;const float *ranges[1];ranges[0] = hranges;cv::calcHist(&ROI,1,0,maskROI,hist,1,histsize,ranges);//感兴趣区域的直方图。从參数太多cv::normalize(hist,hist,0,180,CV_MINMAX);		//对直方图进行归一化处理;cv::Mat backpro;cv::calcBackProject(&hue,1,0,hist,backpro,ranges); //对h通道的进行反投影放入backpro中backpro &= mask;cv::RotatedRect trackBox = cv::CamShift(backpro,selection,TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,10,1));//使用均值秒一算法找出RECT;cv::ellipse(frame,trackBox,cv::Scalar(0,0,255),2,CV_AA);}cv::imshow("test",frame);if(waitKey(30) >= 0)break;}capture.release();return 0;
}

效果

用摄像头获取视频

直接读取视频

总结:

效果不是太好。可能是没有预处理或者參数设置的不好。

刚開始学习的人。期待大婶知道!

 

 

这篇关于用Camshift算法对指定目标进行跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/643731

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时