【数据存储】数据压缩算法DEFLATE

2024-01-25 15:20

本文主要是介绍【数据存储】数据压缩算法DEFLATE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.数据压缩算法DEFLATE

当前数据压缩领域流行的无损压缩算法有很多,如DEFLATE、BZIP2、LZMA、LZMA2等等,其中压缩速度最快的是DEFLATE压缩算法。根据对DEFLATE算法性能的实际测试,发现DEFLATE算法在大数据文件压缩方面的性能表现,并不如预期那样令人满意。

Deflate是同时使用了LZ77算法与哈夫曼编码(Huffman Coding)的一个无损数据压缩算法1。

Deflate压缩与解压代码可以在自由、通用的压缩库zlib上找到。常见的压缩算法如下:

  • zlib(RFC1950):一种格式,是对deflate进行了简单的封装,zlib=zlib头+deflate编码的实际内容+zlib尾。
  • gzip(RFC1952):一种格式,也是对deflate进行的封装,gzip=gzip头+deflate编码的实际内容+gzip尾。

LZ77算法是采用字典做数据压缩的算法,由以色列的两位大神Jacob Ziv与Abraham Lempel在1977年发表的论文《A Universal Algorithm for Sequential Data Compression》中提出。基于统计的数据压缩编码,比如Huffman编码,需要得到先验知识,即信源的字符频率,然后进行压缩。但是在大多数情况下,这种先验知识是很难预先获得。因此,设计一种更为通用的数据压缩编码显得尤为重要。LZ77数据压缩算法应运而生,其核心思想是利用数据的重复结构信息来进行数据压缩。

two types of compression methodologies:

  • Stateless - data associated with a compression operation is compressed without any reference to another compression operation.
  • Stateful - data in each compression operation is compressed with reference to previous compression operations in the same data stream i.e. history of data is maintained between the operations.

stateful inflate

  • Inflate: 这是一个算法,通常用于数据压缩和解压缩。它是DEFLATE算法的一部分,DEFLATE是一个广泛使用的无损数据压缩算法。
  • Stateful (有状态的): 在计算中,一个算法或过程如果依赖于其之前的状态或历史,我们说它是“有状态的”。与“无状态的”算法或过程相反,后者不依赖于任何之前的状态。

在解压缩过程中使用某种状态的系统或算法。这通常涉及到以下内容:

上下文敏感: 有状态的解压缩算法可能需要对之前的上下文进行敏感分析,以便更好地理解并解压缩数据。

历史记录: 这些算法可能会跟踪之前处理过的数据或模式,以优化解压缩过程。

动态调整: 算法可能会根据它之前遇到的数据动态地改变其行为或参数。

stateless inflate

Here is a simplified explanation of how stateless inflate works:

  1. Block Independence: In a stateless inflate process, compressed data is divided into blocks, and each block is compressed independently. This means that the decompression of one block doesn’t rely on the decompression state of previous blocks.
  2. Decompression Algorithm: The stateless inflate algorithm reads a compressed block of data and uses the information within that block to decompress it. This typically involves reconstructing the original data from the compressed form using the Huffman codes and LZ77 compression techniques.
  3. No Persistent State: After decompressing a block, there is no need to maintain persistent state information for the next block. Each block is treated as an independent unit, making it easier to parallelize or distribute the decompression process.
  4. Efficiency: Stateless inflate can be more efficient in certain scenarios, especially when dealing with streaming data or in parallel processing environments. It allows for a simpler and faster implementation because there is no need to manage state information across blocks.

Stateless inflate is commonly used in scenarios where data can be processed in a streaming fashion, and each compressed block is relatively small and independent. This approach is well-suited for certain applications, such as network protocols, file compression formats, and other situations where data arrives in chunks that can be processed independently.

这篇关于【数据存储】数据压缩算法DEFLATE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/643684

相关文章

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.