【项目日记(四)】第一层: 线程缓存的具体实现

2024-01-25 13:52

本文主要是介绍【项目日记(四)】第一层: 线程缓存的具体实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💓博主CSDN主页:杭电码农-NEO💓

⏩专栏分类:项目日记-高并发内存池⏪

🚚代码仓库:NEO的学习日记🚚

🌹关注我🫵带你做项目
  🔝🔝
开发环境: Visual Studio 2022


在这里插入图片描述

项目日记

  • 1. 前言
  • 2. ThreadCache结构设计
  • 3. 哈希桶中的内存对齐规则
  • 4. 线程缓存申请内存的全过程
  • 5. 线程缓存释放内存的全过程
  • 6. 对项目边角代码的拓展

1. 前言

由于此项目需要创建多个文件
所以我直接在.h文件中既放声明
也存放实现,减少文件的数量

本章重点:

本篇文章着重讲解ThreadCache线程
缓存结构的具体实现,包含内存对齐的
方法,申请/释放内存的函数以及向中心
缓存中索要/还回内存的函数!本篇文章
大多数都是代码实现,请大家耐心学习


2. ThreadCache结构设计

在上一章谈到,线程缓存是一个哈希桶结构
每个桶中存放的是自由链表(小块儿内存)

由于自由链表不止在ThreadCache中使用,所以定义一个shared.h存放所有文件共享的内容!

shared.h文件中的自由链表结构:

//管理切分好的小对象的自由链表
class FreeList
{
public:void Push(void* obj){assert(obj);//头插*(void**)obj = _freeList;_freeList = obj;_size++;}void PushRange(void* start, void* end, size_t n)//范围型的插入{*(void**)end = _freeList;_freeList = start;_size += n;}void* Pop(){assert(_freeList);//头删void* obj = _freeList;_freeList = *(void**)obj;--_size;return obj;}void PopRange(void*& start, void*& end, size_t n)//start和end是输出型参数{assert(n <= _size);start = _freeList;end = start;for (int i = 0; i < n - 1; i++)end = *(void**)end;_freeList = *(void**)end;*(void**)end = nullptr;_size -= n;}bool Empty(){return _freeList == nullptr;}size_t& MaxSize(){return _maxSize;}size_t Size(){return _size;}
private:void* _freeList = nullptr;size_t _maxSize = 1;//记录ThreadCache一次性最多向CentralCache申请多少个对象size_t _size = 0;//记录自由链表中挂的内存个数
};

关于什么是自由链表的问题我们在
定长池的实现中已经讲解过了,如果
你不懂,简易从头开始看博客,学项目!

前置文章: 定长池的实现

然后在ThreadCache.h中,需要实现以下函数

class ThreadCache
{
public://向线程缓存申请内存void* Allocate(size_t size);//向线程缓存释放内存void Deallocate(void* ptr, size_t size);// 从中心缓存获取对象void* FetchFromCentralCache(size_t index, size_t size);// 释放对象时,链表过长时,回收内存回到中心缓存void ListTooLong(FreeList& list, size_t size);
private:FreeList _freeList[208];
};

3. 哈希桶中的内存对齐规则

你可能会有以下问题:

  1. 为什么上面写的哈希桶个数是208?
  2. 要是遇见不规则的字节数该怎么办?

这里用到一个非常巧妙的方法,也就是内存对齐!比如想要申请1~7字节的内存,先把它对齐为8字节再进行后续的操作,这么做的原因有两个: 一是因为如果申请多少内存就给多少内存,那么我们需要的哈希桶的数量就太多了,不合理. 二是因为释放内存时比较方便

内存对齐的具体规则:

在这里插入图片描述
这里有一个问题: 为什么不都使用8字节对齐?

因为若使用8字节对齐,共256KB内存
一共要使用三万多个桶,也是不合理的
这样的对齐方式只用使用208个桶!

对齐规则的具体实现:

static inline size_t AlignUp(size_t size)//将size向上对齐
{if (size <= 128)return _AlignUp(size, 8);else if (size <= 1024)return _AlignUp(size, 16);else if (size <= 8 * 1024)return _AlignUp(size, 128);else if (size <= 64 * 1024)return _AlignUp(size, 1024);else if (size <= 256 * 1024)return _AlignUp(size, 8*1024);elsereturn _AlignUp(size, 1 << PAGE_SHIFT);
}
static inline size_t _AlignUp(size_t size, size_t align_number)
{return (((size)+align_number - 1) & ~(align_number - 1));
}

4. 线程缓存申请内存的全过程

首先,要先把申请的内存进行内存对齐
然后再用这个对齐后的内存去找对应
的哈希桶结构,若这个桶中有小块儿内
存,那么直接将小块儿内存返回,若桶中
没有内存了,就去中心缓存中拿内存!

void* ThreadCache::Allocate(size_t size)
{assert(size <= MAX_BYTES);//申请的字节数不能大于了256KBsize_t align_size = AlignmentRule::AlignUp(size);//计算对齐数size_t index = AlignmentRule::Index(size);//计算在哪个桶if (!_freeList[index].Empty())//若当前自由链表有资源则优先拿释放掉的资源return _freeList[index].Pop();else//自由链表没有就从中心缓存获取空间return ThreadCache::FetchFromCentralCache(index, align_size);
}

注:计算在哪个桶的函数会放在文章最后

当走到else语句,也就是要去中心缓存获取内存时,会有个问题:一次性拿几个小块儿内存过来?拿多了怕浪费,拿少了又怕要重新再来拿,这里采用的是慢启动的算法,第一次先拿一个,第二次再拿两个,以此类推.除此之外,小对象应该多拿,大对象应该少拿.所以拿的个数应该是这两个条件中较小的内一个

void* ThreadCache::FetchFromCentralCache(size_t index, size_t size)
{//采用慢开始的反馈调节算法,小对象给多一点,大对象给少一点size_t massNum = min(_freeList[index].MaxSize(),AlignmentRule::NumMoveSize(size));//向中心缓存获取多少个对象if (_freeList[index].MaxSize() == massNum)//慢增长,最开始一定是给1,不会一次性给它很多内存,若不断有size大小的内存需求,再慢慢多给你_freeList[index].MaxSize() += 1;void* begin = nullptr;void* end = nullptr;//需要massnum个对象,但是实际上不一定有这么多个,返回值为实际上获取到的个数size_t fact = CentralCache::GetInstance()->CentralCache::FetchRangeObj(begin,end,massNum,size);//要massmun个对象,每个对象的大小是sizeassert(fact != 0);if (fact == 1){assert(begin == end);return begin;}else{//如果从中心缓存获取了多个,则将第一个返回给threadcachee,然后再将剩余的内存挂在threadcache的自由链表中_freeList[index].PushRange((*(void**)begin), end, fact - 1);return begin;}return nullptr;
}

注: 根据对象大小获取个数的函数放在文章最后
FetchRangeObj函数是中心缓存要关心的东西


5. 线程缓存释放内存的全过程

由于申请内存时已经内存对齐了,所以释放的内存肯定是已经对齐过的了,找到对应的桶,直接将这个小块儿内存挂在桶后面,若当换回来的内存在自由链表中的长度大于一次性向中心缓存申请的长度,就将内存还给中心缓存

void ThreadCache::Deallocate(void* ptr, size_t size)
{assert(ptr);assert(size <= MAX_BYTES);//找到对应的自由链表桶[[0,208]size_t index = AlignmentRule::Index(size);_freeList[index].Push(ptr);//当换回来的内存在自由链表中的长度大于一次性向中心缓存申请的长度,就将内存还给中心缓存if (_freeList[index].Size() >= _freeList[index].MaxSize())ListTooLong(_freeList[index],size);
}
void ThreadCache::ListTooLong(FreeList& list, size_t size)//大于等于一个批量内存就还回去一个批量,不一定全部还回去
{void* start = nullptr;void* end = nullptr;list.PopRange(start, end, list.MaxSize());//start和end是输出型参数CentralCache::GetInstance()->ReleaseListToSpans(start, size);
}

注:ReleaseListToSpans函数是中心缓存需要关心的


6. 对项目边角代码的拓展

这里存放的是shared.h文件中,存放
如何通过字节数来找到对应的桶的函数
以及慢增长函数的具体实现:

慢增长函数:

static const size_t MAX_BYTES = 256 * 1024; //最大内存限制,256KB
static const size_t N_FREE_LIST = 208; //哈希桶的数量static size_t NumMoveSize(size_t size)//此函数代表从中心缓存取多少个对象(和慢增长对比)
{assert(size > 0);// [2, 512],一次批量移动多少个对象的(慢启动)上限值// 小对象一次批量上限高// 大对象一次批量上限低int num = MAX_BYTES / size; //256KB除单个对象大小if (num < 2)//最少给2个num = 2;if (num > 512)//最大给512个num = 512;return num;
}

通过字节数计算在哪个桶:

// 计算映射的哪一个自由链表桶
static inline size_t Index(size_t bytes)
{assert(bytes <= MAX_BYTES);// 每个区间有多少个链static int group_array[4] = { 16, 56, 56, 56 };if (bytes <= 128) return _Index(bytes, 3);else if (bytes <= 1024) return _Index(bytes - 128, 4) + group_array[0];else if (bytes <= 8 * 1024) return _Index(bytes - 1024, 7) + group_array[1] + group_array[0];else if (bytes <= 64 * 1024) return _Index(bytes - 8 * 1024, 10) + group_array[2] + group_array[1]+ group_array[0];else if (bytes <= 256 * 1024) return _Index(bytes - 64 * 1024, 13) + group_array[3] +group_array[2] + group_array[1] + group_array[0];elsereturn -1;
}
static inline size_t _Index(size_t bytes, size_t align_shift)
{return ((bytes + (1 << align_shift) - 1) >> align_shift) - 1;
}

对于边角的函数,我们了解它的原理即可
不需要完全掌握它是如何实现的!


🔎 下期预告:中心缓存的具体实现🔍

这篇关于【项目日记(四)】第一层: 线程缓存的具体实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/643479

相关文章

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端