如何避免spark dataframe的JOIN操作之后产生重复列(Reference '***' is ambiguous问题解决)

本文主要是介绍如何避免spark dataframe的JOIN操作之后产生重复列(Reference '***' is ambiguous问题解决),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

spark datafrme提供了强大的JOIN操作。


但是在操作的时候,经常发现会碰到重复列的问题。如下:


如分别创建两个DF,其结果如下:


val df = sc.parallelize(Array(
    ("one", "A", 1), ("one", "B", 2), ("two", "A", 3), ("two", "B", 4)
)).toDF("key1", "key2", "value")
df.show()


+----+----+-----+
|key1|key2|value|
+----+----+-----+
| one|   A|    1|
| one|   B|    2|
| two|   A|    3|
| two|   B|    4|
+----+----+-----+


val df2 = sc.parallelize(Array(
    ("one", "A", 5), ("two", "A", 6)
)).toDF("key1", "key2", "value2")
df2.show()


+----+----+------+
|key1|key2|value2|
+----+----+------+
| one|   A|     5|
| two|   A|     6|
+----+----+------+


对其进行JOIN操作之后,发现多产生了KEY1和KEY2这样的两个字段。

val joined = df.join(df2, df("key1") === df2("key1") && df("key2") === df2("key2"), "left_outer")
joined.show()


+----+----+-----+----+----+------+
|key1|key2|value|key1|key2|value2|
+----+----+-----+----+----+------+
| two|   A|    3| two|   A|     6|
| two|   B|    4|null|null|  null|
| one|   A|    1| one|   A|     5|
| one|   B|    2|null|null|  null|
+----+----+-----+----+----+------+


假如这两个字段同时存在,那么就会报错,如下:org.apache.spark.sql.AnalysisException: Reference 'key2' is ambiguous


因此,网上有很多关于如何在JOIN之后删除列的,后来经过仔细查找,才发现通过修改JOIN的表达式,完全可以避免这个问题。而且非常简单。主要是通过Seq这个对象来实现。


df.join(df2, Seq("key1", "key2"), "left_outer").show()


+----+----+-----+------+
|key1|key2|value|value2|
+----+----+-----+------+
| two|   A|    3|     6|
| two|   B|    4|  null|
| one|   A|    1|     5|
| one|   B|    2|  null|
+----+----+-----+------+

通过实践,完全成功!

这篇关于如何避免spark dataframe的JOIN操作之后产生重复列(Reference '***' is ambiguous问题解决)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642532

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

poj2406(连续重复子串)

题意:判断串s是不是str^n,求str的最大长度。 解题思路:kmp可解,后缀数组的倍增算法超时。next[i]表示在第i位匹配失败后,自动跳转到next[i],所以1到next[n]这个串 等于 n-next[n]+1到n这个串。 代码如下; #include<iostream>#include<algorithm>#include<stdio.h>#include<math.

poj3261(可重复k次的最长子串)

题意:可重复k次的最长子串 解题思路:求所有区间[x,x+k-1]中的最小值的最大值。求sa时间复杂度Nlog(N),求最值时间复杂度N*N,但实际复杂度很低。题目数据也比较水,不然估计过不了。 代码入下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip