基于CNN的图像增强之去模糊

2024-01-25 07:18
文章标签 cnn 图像增强 去模糊

本文主要是介绍基于CNN的图像增强之去模糊,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像模糊产生的原因非常多, 主要如下:

(1)相机抖动. □ 拍摄时相机不稳. □ 全部画面被模糊. 

(2)物体的运动. □ 部分物体运动. □ 不同区域模糊不同. 

(3) 镜头失焦. □ 大光圈小景深时的效果. 等等。

今天在看Learning Deep CNN Denoiser Prior for Image Restoration (CVPR, 2017) 的文章,里面涵盖的内容非常全,其中模糊也是其中主要工作之一,这工作挺有意思的,因此对其进行复现。

1、论文原理

论文为图像恢复,主要包括图像去噪、图像去模糊和图像超分辨率重建。本博客主要关注的是模糊。

论文将图像恢复统一为一个操作,如论文所述:即目标要还原出干净的x.


其采用模型框架如下:由七层组成,含三种blocks,分别是:第一个“dilated Convolution+Relu”,中间五个“dilated Convolution+BN+Relu”,最后一层“dilated Convolution”。其中空洞因子(dilated factors,3×3)被依次设置为,1,2,3,4,3,2,1。每一个中间层的feature maps个数均为64.


论文的主要核心环节:

(1)Using Dilated Filter to Enlarge Receptive Field.  使用dilated filter扩大感受野。
(2)Using Batch Normalization and Residual Learning to Accelerate Training. 使用批标准化BN和残差学习加速训练。
(3)Using Training Samples with Small Size to Help Avoid Boundary Artifacts 使用小尺寸训练样本避免边界效应。

(4)Learning Specific Denoiser Model with Small Interval Noise Levels. 学习噪声水平间隔较小的特定的去噪模型。


2、论文实践复现效果如下图所示:








不过比较难的程序输入是需要同时指定其模糊矩阵图,这个在实际应用中还有等于进一步细化。

这篇关于基于CNN的图像增强之去模糊的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642486

相关文章

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

【tensorflow CNN】构建cnn网络,识别mnist手写数字识别

#coding:utf8"""构建cnn网络,识别mnistinput conv1 padding max_pool([2,2],strides=[2,2]) conv2 x[-1,28,28,1] 卷积 [5,5,1,32] -> [-1,24,24,32]->[-1,28,

震惊,从仿真走向现实,3D Map最大提升超12,Cube R-CNN使用合成数据集迁移到真实数据集

震惊,从仿真走向现实,3D Map最大提升超12,Cube R-CNN使用合成数据集迁移到真实数据集 Abstract 由于摄像机视角多变和场景条件不可预测,在动态路边场景中从单目图像中准确检测三维物体仍然是一个具有挑战性的问题。本文介绍了一种两阶段的训练策略来应对这些挑战。我们的方法首先在大规模合成数据集RoadSense3D上训练模型,该数据集提供了多样化的场景以实现稳健的特征学习。随后,

Segmentation简记-Multi-stream CNN based Video Semantic Segmentation for Automated Driving

创新点 1.RFCN & MSFCN 总结 网络结构如图所示。输入视频得到图像分割结果。 简单粗暴

CNN-LSTM用于时间序列预测,发二区5分+没问题!

为了进一步提高时序预测的性能,研究者们组合了CNN和LSTM的特点,提出了CNN-LSTM混合架构。 这种架构因为独特的结构设计,能同时处理时空数据、提取丰富的特征、并有效解决过拟合问题,实现对时间序列数据的高效、准确预测,远超传统方法。 因此,它已经成为我们应对时序预测任务离不开的模型,有关CNN-LSTM的研究也成了当下热门主题之一,高质量论文频发。 为了方便大家了解CNN-LSTM的最

40从传统算法到深度学习:目标检测入门实战 --深度学习在目标检测中的应用:R-CNN

参考视频教程:    **深度学习之目标检测常用算法原理+实践精讲  ** R-CNN 在传统的目标检测方法中,我们使用滑动窗口标记目标的位置、使用人工设计的特征和机器学习算法进行分类,此类方法虽然可以基本达到实时性的要求但是其缺点也比较明显。首先滑动窗口采用穷举的策略来找到目标,这种方法的缺陷是如果步长和窗口尺寸设置太小会导致时间复杂度过高,在检测过程中会出现过多的冗余窗口,如果窗口

【Python机器学习】卷积神经网络(CNN)——语义理解

无论是人类还是机器,理解隐藏在文字背后的意图,对于倾听者或阅读者来说的,都是一项重要的技能。除了理解单个词的含义,词之间还有各种各样巧妙的组合方式。 词的性质和奥妙与词之间的关系密切相关。这种关系至少有两种表达方式: 词序词的临近度 这些关系的模式以及词本身存在的模式可以从两个方面来表示:空间和时间。两者的区别主要是:对于前者,要像在书页上的句子那样来处理——在文字的位置上寻找关系;对于后者

深度学习-TensorFlow2:TensorFlow2 创建CNN神经网络模型【ResNet模型】

自定义ResNet神经网络-Tensorflow【cifar100分类数据集】 import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 放在 import tensorflow as tf 之前才有效import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras