细说算法-------快速排序QuickSort

2024-01-24 23:58

本文主要是介绍细说算法-------快速排序QuickSort,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录:

一、快速排序思想介绍

二、实现的三步骤(分解、子问题求解、合并)

三、C++代码实现

四、时间空间复杂度分析

------------------------------------------------------------------------分割线-----------------------------------------------------------------------------

一、快速排序思想介绍

快速排序(QuickSort)是对冒泡排序(BubbleSort)的一种改进。排序效率在同为O(N*logN)的几种排序方法中效率较高,再加上快速排序算法是  分治策略(Divide-and-ConquerMethod)的典型应用。因此很多软件公司的笔试面试,还有大大小的程序方面的考试中也常常出现快速排序的身影。博主就在蓝桥杯竞赛上遇到过。

 

快速排序由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的三个序列:第一个序列中所有的元素均不大于基准元素、第二个序列是基准元素、第三个序列中所有的元素均不小于基准元素。由于第二个序列已经处于正确位置,因此需要再按此方法对第一个和第三个序列分别进行排序,整个排序过程可以递归进行,最终可以使得整个序列变成有序序列。


 二、实现的三步骤(分解、子问题求解、合并)

快速排序算法的基本思想是基于分治策略的,利用分治可将快速排序的基本思想描述如下:设当前待排序的序列为R[ low : high ] ,其中low <= high,如果序列的规模足够小则直接进行排序,否则分三步处理:

1、分解

在R[ low :high ]中选定一个元素作为基准元素(pivot),该基准元素的最终的位置(pivotpos)在划分的过程中确定。将比R[ pivotpos]大的数全放到它的右边R[pivotpos+1 : high],小于或等于它的数全放到它的左边R[low : pivotpos-1 ]。

 

注意:基准元素如何选定,选哪个元素?基准元素最终的排序位置,在划分的过程中确定,如何确定?不要着急,下面讲解。

 

2、求解子问题

对两个子序列R[low :pivotpos-1 ]和R[pivotpos+1 : high]分别通过递归调用快速排序。

 

3、合并

由于对子序列R[low :pivotpos-1 ]和R[pivotpos+1 : high]的排序是就地进行的,所以在子序列R[low : pivotpos-1 ]和R[pivotpos+1 : high]都排序结束后,合并步骤无须做什么,整个序列R[ low : high ]就排好序了。

 

基准元素(pivot)的选取。最终位置(pivotpos)的确定。

快速排序要选定基准元素,选取基准元素应该遵循平衡子问题的原则:即使得划分后的两个子序列的长度尽量相同。基准元素的选择方法有很多种,常见的方式是把待排序列的首元素作为基准元素。

 

基准元素最终位置(pivotpos)的确定

快速排序中基准元素对序列进行划分,从而实现分治。假定待排序列为R[ low : high ],该划分过程以第一个元素为基准元素。

1、设定两个参数i和j,他们的初值分别为待排序列的下界和上界,即i=low,j=high。

2、选取待排序列的第一个元素R[low]为基准元素,并将该值赋值给变量pivot。

3、令j自j位置开始向左扫面,如果j位置所对应的元素的值大于等于pivot,则j前移一个位置(即j--)。重复该过程,直到找到第一个小于pivot的元素R[j],将R[j]和R[i]进行交换,i++。其实交换后R[j]所对应的元素就是pivot。

4、令i自i位置开始向右扫描,如果i位置所对应的元素的值小于等于pivot,则i后移(即i++)。重复该过程,直至找到第一个大于pivot的元素R[i],将R[i]与R[j]进行交换,j--。其实,交换后R[i]所对应的元素就是pivot。

5、重复步骤3、4,交替改变扫描方向,从两端各自往中间靠拢直至i==j。此时i和j指向同一个位置,即基准元素pivot的最终位置。


三、C++代码实现如下:

#include <iostream>  
#include <string>  
using namespace std;  //交换数组中两个元素位置  
void swap(int &a,int & b)   {int tmp;tmp=a;a=b;b=tmp;}  int Partition(int * Arr,int low,int high)    //划分方法  
{  //i和j分别指向数组下界和上界,pivot是待排的第一个元素  int i=low,j=high,pivot=Arr[low];  while (i<j)  {  /* j自j位置开始向左扫面,如果j位置所对应的元素的值大于等于pivot,则j前移一个位置(即j--)。 重复该过程,直到找到第一个小于pivot的元素R[j],将R[j]和R[i]进行交换,i++。 其实交换后R[j]所对应的元素就是pivot。*/  while (i<j && Arr[j]>=pivot)  {  j--;  }  if (i<j)  {  swap(Arr[i++],Arr[j]);//注意这里是交换元素,另外还有挖坑法实现,是元素覆盖。  }  /* 令i自i位置开始向右扫描,如果i位置所对应的元素的值小于等于pivot,则i后移(即i++)。 重复该过程,直至找到第一个大于pivot的元素R[i],将R[i]与R[j]进行交换,j--。 其实,交换后R[i]所对应的元素就是pivot。*/  while (i<j  && Arr[i]<=pivot){i++;}  if (i<j)  {  swap(Arr[i],Arr[j--]);  }  }  /*此时i和j指向同一个位置,即基准元素pivot的最终位置。返回i的值*/  return  i;  
}  
void   QuickSort(int * Arr,int low,int high)    //对数组Arr[low  high]进行快速排序  
{  int pivotpos;   //划分的基本元素所在的位置  if(low<high)    //区间长度大于1时才排序  {  pivotpos=Partition(Arr,low,high);//对Arr[low high]进行划分  QuickSort(Arr,low,pivotpos-1);    QuickSort(Arr,pivotpos+1,high);  }  
}  void main()  
{  int num;  cout<<"请输入要排序元素的个数num="<<endl;  cin>>num;  int *array=new int[num];  cout<<"请给每一个元素赋初值\n";  for (int i=0;i<num;i++)  {  cin>>array[i];  }  QuickSort ( array,  0,num-1);  cout<<"输出排序后的结果"<<endl;  for (int i=0;i<num;i++)  {  cout<<array[i]<<"  ";  }  cout<<endl;  system("PAUSE");  
} 
注意:partition函数有多种实现方式,比如下面:  
int Partition(int * Arr,int low,int high)     
{    int i = low, j = high;    int pivot = Arr[low]; //Arr[low]已经保存,可以被覆盖,即第一个坑    while (i < j)    {    // 从右向左找小于pivot的数来填Arr[low]    while(i < j && Arr[j] >= pivot)     j--;      if(i < j)  {//将Arr[j]填到Arr[i]中,Arr[j]就形成了一个新的坑.  //这里不再是交换元素位置。  Arr[i] = Arr[j];     i++;    }  // 从左向右找大于或等于pivot的数来填Arr[j]    while(i < j && Arr[i] < pivot)    i++;      if(i < j)     {    Arr[j] = Arr[i]; //将Arr[i]填到Arr[j]中,Arr[i]就形成了一个新的坑    j--;    }    }    //退出时,i等于j。将pivot填到这个坑中    Arr[i] = pivot;    //返回调整后基准数的位置  return i;    
} 

四、时间空间复杂度分析

快速排序算法是递归执行,需要一个栈来存放每一层递归调用的必要信息,其最大容量应与递归调用的深度一致。最好的情况下,每次划分较为均匀,递归树的深度为O(logN),故递归所需要的栈空间为O(logN)。最坏情况下,递归树的高度为O(N),所需的栈空间为O(N)。平均情况下,所需栈空间为O(logN)。


这篇关于细说算法-------快速排序QuickSort的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641447

相关文章

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖