本文主要是介绍C++ Primer Plus 学习笔记 第十五章 异常 abort() 返回错误提示,try-throw-catch exception和其派生类 RTTI 类型转换运算符,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
abort() 来源于cstdlib 或 stdlib.h中 手动调用该函数来终止程序。 程序会跳出如下信息然后程序终止
untenable arguments to hmean()This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.
或者使用手动判断异常的方式 免去程序强制退出
error2.cpp
#include <iostream>
#include <cfloat>bool hmean(double a, double b, double * ans);int main()
{double x, y, z;std::cout << "Enter two numbers: ";while (std::cin >> x >> y){if (hmean(x, y, &z))std::cout << "Hearmonic mean of " << x << " and " << y<< " is " << z << std::endl;elsestd::cout << "One value should not be the negative "<< "of the other - try again.\n";std::cout << "Enter next set of numbers <q to quit>: ";}std::cout << "Bye!\n";return 0;
}bool hmean(double a, double b, double * ans)
{if (a == -b){
// 程序示例是这样 但是这句表达式有毛用 至今看不出来*ans = DBL_MAX;return false;}else{*ans = 2.0 * a * b / ( a + b);return true;}
}
异常机制三部曲
引发异常,使用处理程序捕获异常,使用try块
这个在大部分的编程语言中都通用
throw() 抛异常
try() 可能会引发异常的代码块
catch() 异常捕获处理。
这个在JAVA Python中是一样的 只是关键字有区别
程序示例:
#include <iostream>
double hmean(double a, double b);int main()
{double x, y, z;std::cout << "Enter two numbers: ";while(std::cin >> x >> y){try{z = hmean(x, y);}catch(const char * s){std::cout << s << std::endl;std::cout << "Enter a new pair of numbers: ";continue;}std::cout << "Harmonic mean of " << x << " and " << y<< " is " << z << std::endl;std::cout << "Enter next set of numbers <q to quit>: ";}std::cout << "Bye!\n";
}double hmean(double a, double b)
{if (a == -b)throw "bad hmean() arguments: a = -b not allowed";return 2.0 * a * b / (a + b);
}
如果没有捕获 C++ 默认调用abort()
将对象用作异常类型:
exc_mean.h
#include <iostream>// bad_hmean异常是判断是否为相反数
// bad_gmean异常是判断参数是否小于0
class bad_hmean
{private:double v1;double v2;public:bad_hmean(double a = 0, double b = 0) : v1(a), v2(b) {}void mesg();
};inline void bad_hmean::mesg()
{std::cout << "hmean(" << v1 << ", " << v2 << "): "<< "invalid arguments: a = -b\n";
}class bad_gmean
{public:double v1;double v2;bad_gmean(double a = 0, double b = 0) : v1(a), v2(b) {}const char* mesg();
};inline const char* bad_gmean::mesg()
{return "gmean() arguments should be >= 0\n";
}
error4.cpp
#include <iostream>
#include <cmath>
#include "exc_mean.h"// 在各自函数中引发异常
double hmean(double a, double b);
double gmean(double a, double b);
int main()
{using std::cout;using std::cin;using std::endl;double x, y, z;cout << "Enter two numbers: ";while (cin >> x >> y){try{z = hmean(x, y);cout << "Harmonic mean of " << x << " and " << y<< " is " << z << endl;cout << "Geometric mean of " << x << " and " << y<< " is " << gmean(x, y) << endl;cout << "Enter next set of numbers <q to quit>: ";}
// 通过捕获异常对象的引用类型来确定是用哪个catchcatch(bad_hmean & bg){bg.mesg();cout << "Try again.\n";continue;}catch(bad_gmean & hg){cout << hg.mesg();cout << "Values used: " << hg.v1 << ", "<< hg.v2 << endl;cout << "Sorry, you don't get to play any more.\n";break;}}cout << "Bye!\n";return 0;
}double hmean(double a, double b)
{if (a == -b)throw bad_hmean(a, b);return 2.0 * a * b / (a + b);
}double gmean(double a, double b)
{if (a < 0 || b < 0)throw bad_gmean(a, b);return std::sqrt(a * b);
}
异常规范:
noexcept 指出所在行的代码不会出现异常 例如:
double marm() noexcept;
但是 谁能保证呢 发誓都没用的 所以 C++11也建议不要用这玩意儿
同时还有一个函数 noexcept() 用来判断操作数是否会引发异常。
栈解退:
正常的函数调用是这样的
如果调用时有异常是这样的:
示例图
程序示例
exc_mean.h
#include <iostream>class bad_hmean
{private:double v1;double v2;public:bad_hmean(double a = 0, double b = 0) : v1(a), v2(b) {}void mesg();
};inline void bad_hmean::mesg()
{std::cout << "hmean(" << v1 << ", " << v2 << "): "<< "invalid arguments: a = -b\n";
}class bad_gmean
{public:double v1;double v2;bad_gmean(double a = 0, double b = 0) : v1(a), v2(b) {}const char* mesg();
};inline const char* bad_gmean::mesg()
{return "gmean() arguments should be >= 0\n";
}
error5.cpp
#include <iostream>
#include <cmath>
#include <string>
#include "exc_mean.h"// 此DEMO是用来展示程序执行到哪一步
class demo
{private:std::string word;public:demo (const std::string & str){word = str;std::cout << "demo " << word << " create\n";}~demo(){std::cout << "demo " << word << " destroyed\n";}void show() const{std::cout << "demo " << word << " lives!\n";}
};double hmean(double a, double b);
double gmean(double a, double b);
double means(double a, double b);int main()
{using std::cout;using std::cin;using std::endl;double x, y, z;{demo d1("found in block in main()");cout << "Enter two numbers: ";while(cin >> x >> y){try{z = means(x, y);cout << "The mean mean of " << x << " and " << y<< " is " << z << endl;cout << "Enter next pair: ";}catch(bad_hmean & bg){bg.mesg();cout << "Try again.\n";continue;}catch(bad_gmean & hg){cout << hg.mesg();cout << "Values used: " << hg.v1 << ", "<< hg.v2 << endl;cout << "Soryy, you don't get to play any more.\n";break;}}d1.show();}cout << "Bye!\n";cin.get();cin.get();return 0;
}double hmean(double a, double b)
{if (a == -b)throw bad_hmean(a, b);return 2.0 * a * b / (a + b);
}double gmean(double a, double b)
{if (a < 0 || b < 0)throw bad_gmean(a, b);return std::sqrt(a * b);
}double means(double a, double b)
{double am, hm, gm;demo d2("found in means()");am = (a + b) / 2.0;try{
// 这里会捕获两次异常 一次是means自身捕获的 还有一次是它抛出去的然后由main()捕获的hm = hmean(a, b);
// 这里如果出现异常直接抛给main() 因为当前函数中没有对此异常进行捕获gm = gmean(a, b);}catch (bad_hmean & bg){bg.mesg();std::cout << "Caught in means()\n";
// 这里抛给main() 一旦出现异常 函数后面的内容就不会执行。 如果函数有调用对象则直接调用解析函数throw;}d2.show();return (am + hm + gm) / 3.0;
}
执行结果
程序说明
异常的
异常的其他特性;
异常抛出来的总是对象的拷贝 以免对象是在函数中创建的临时对象而被释放掉造成错误
异常捕获使用引用的原因是 可以引用异常的派生类 这样可以捕获一系列的同一基类的异常
但是 catch的排列顺序要与派生顺序相反。
exception类
是一个抽象异常类
通过重新定义该类的what()函数 返回相应的字符串
通过此类派生了stdexcept类
该类又派生出两个系列的基类
logic_error和runtime_error
logic_error:
runtime_error
bad_alloc异常和new
new导致的分配问题会引发bad_alloc异常 <new>中已经包含了该异常的声明
程序示例:
#include <iostream>
#include <new>
#include <cstdlib>
using namespace std;struct Big
{double stuff[20000];
};int main()
{Big* pd;try{cout << "Trying to get a big block of memory:\n";pd = new Big[10000];cout << "Got past the new request:\n";}catch (bad_alloc & ba){cout << "Caught the exception!\n";cout << ba.what() << endl;exit(EXIT_FAILURE);}cout << "Memory successfully allocated\n";pd[0].stuff[0] = 4;cout << pd[0].stuff[0] << endl;delete [] pd;return 0;
}
该程序我没有正常调出bad_alloc异常 因为在编译的时候 编译器就告诉我太大了 [手动无奈]
如果希望new失败的时候返回的是空指针 就这么写
int* pi = new (std::nothrow) int;
异常,继承和类
嗯。说的就是普通的类中带有异常内部类。
上代码吧:
sales.h
#include <stdexcept>
#include <string>class Sales
{public:enum {MONTHS = 12};
// 声明内部异常类class bad_index: public std::logic_error{private:int bi;public:explicit bad_index(int ix, const std::string & s = "Index error in Sales object:\n");int bi_val() const {return bi;}virtual ~bad_index() throw() {}};explicit Sales(int yy = 0);Sales(int yy, const double * gr, int n);virtual ~Sales(){}int Year() const { return year;}virtual double operator[] (int i) const;virtual double & operator[] (int i);private:double gross[MONTHS];int year;
};class LabeledSales : public Sales
{public:
// 声明内部异常类class nbad_index : public Sales::bad_index{private:std::string lbl;public:nbad_index(const std::string & lb, int ix,const std::string & s = "Index error in LabeledSales object\n");const std::string & label_val() const {return lbl;}virtual ~nbad_index() throw() {}};explicit LabeledSales(const std::string & lb = "none", int yy = 0);LabeledSales(const std::string & lb, int yy, const double * gr, int n);virtual ~LabeledSales() {}const std::string & Label() const {return label;}virtual double operator[](int i) const;virtual double & operator[](int i);private:std::string label;
};
sales.cpp
#include "sales.h"
#include <iostream>
using std::string;Sales::bad_index::bad_index(int ix, const string & s): std::logic_error(s), bi(ix)
{
}Sales::Sales(int yy)
{year = yy;for (int i = 0; i < MONTHS; ++i)gross[i] = 0;
}Sales::Sales(int yy, const double * gr, int n)
{year = yy;int lim = ( n < MONTHS) ? n : MONTHS;int i;for (i = 0; i < lim; ++i)gross[i] = gr[i];for (; i < MONTHS; ++i)gross[i] = 0;
}double Sales::operator[](int i) const
{if (i < 0 || i >= MONTHS)throw bad_index(i);return gross[i];
}double & Sales::operator[](int i)
{if (i < 0 || i >= MONTHS)throw bad_index(i);return gross[i];
}LabeledSales::nbad_index::nbad_index(const string & lb, int ix,const string & s) : Sales::bad_index(ix, s)
{lbl = lb;
}LabeledSales::LabeledSales(const string & lb, int yy) : Sales(yy)
{label = lb;
}LabeledSales::LabeledSales(const string & lb, int yy, const double * gr, int n): Sales(yy, gr, n)
{label = lb;
}double LabeledSales::operator[](int i) const
{if (i < 0 || i >= MONTHS)throw nbad_index(Label(), i);return Sales::operator[](i);
}double & LabeledSales::operator[](int i)
{if (i < 0 || i >= MONTHS)throw nbad_index(Label(), i); return Sales::operator[](i);
}
user_sales.cpp
#include <iostream>
#include "sales.h"int main()
{using std::cout;using std::cin;using std::endl;double vals1[12] ={1220, 1100, 1122, 2212, 1232, 2334,1884, 2393, 3302, 2922, 3002, 3544};double vals2[12] ={12, 11, 22, 21, 32, 34,28, 29, 33, 29, 32, 35};Sales sales1(2011, vals1, 12);LabeledSales sales2("Blogstar", 2012, vals2, 12);cout << "First try block:\n";try{int i;cout << "Year = " << sales1.Year() << endl;cout << "Label = " << sales2.Label() << endl;
// 这里迭代的时候到12下标就溢出 这里会捕获到异常for ( i = 0; i <= 12; i++){cout << sales2[i] << " ";if (i % 6 == 5)cout << endl;}cout << "End of try block 1.\n";}catch(LabeledSales::nbad_index & bad){cout << bad.what();cout << "Company: " << bad.label_val() << endl;cout << "bad index: " << bad.bi_val() << endl;}catch(Sales::bad_index & bad){cout << bad.what();cout << "bad index: " << bad.bi_val() << endl;}cout << "done\n";return 0;
}
未捕获的异常和意外终止的异常
未捕获的异常系统会调用terminate()函数,该函数默认会调用abort()终止程序。
可以设置该函数使其执行自定义的函数
// terminate函数来源于exception
#include <exception>
using namespace std;// 设置terminate函数调用的是指定的函数
set_terminate(myQuit);void myQuit()
{
cout << "Terminating due to uncaught excetion\n";
exit(5);
}
意外发生的异常
可以指定异常贵方来指定捕获哪些异常:
// 声明抛出的异常类, 这是异常规范double Argh(double, double) throw(out_of_bounds);try{x = Argh(a, b);
}
// 在使用Argh函数的地方捕获指定异常
catch(out_of_bounds & ex)
{...
}
这样很麻烦 如果是在二开祖传代码 鬼知道会爆出什么过异常 如果都按照异常规范来操作的话 一来可能异常会有很多,这样写估计要写两大行。二来 咱这么详细 总会有漏 。所以 C++11开始要抛弃这种规范。
这种意外导致的异常C++是调用unexpected()函数(名字很奇怪) 然后该函数调用terminate() 然后该函数默认调用abort()
同样 也有set_unexpected()函数 用来自定义意外异常函数
但是此方法与set_terminate()不一样,有限制:
意思就是 set_unexpected()中如果是引发异常 那就看该异常与throw()中的异常是不是一样 如果是的话就就用该throw()中的异常处理,也就是说将意外情况引导到指定的catch中。
如果异常不在异常规范中,且规范中没有std::bad_exception类型的异常 则调用terminate()
如果异常不在异常规范中,但是规范中有std::bad_exception类型的异常。 那将会抛std::bad_exception异常
通用方法:
#include <exception>
using namespace std;set_unexpected(myUnexpected);void myUnexpected()
{// 或者 throw();throw std::bad_exception();
}double Argh(double, double) throw(out_of_bounds, bad_exception);
...
try{x = Argh(a, b);
}
catch(out_of_bounds & ex)
{...
}
catch(bad_exception & ex)
{...
}
异常注意事项
不要在模板中使用异常规范 因为涉及内存的动态分配问题
解决方案就是讲delete [] ar;反倒抛异常的语句前面
这说的是WINDOWS是么 - -
RTTI
运行阶段类型识别。 用来确定对象类型的
有三个元素
dynamic_cast:用来判断某个对象指针是否可以安全的转换为另一个对象的指针。如果可以,正常转换,如果不行,则返回空指针。格式:
Superb * pm = dynamic_cast<Superb *>(pg);
代码示例:
#include <iostream>
#include <cstdlib>
#include <ctime>using std::cout;class Grand
{private:int bold;public:Grand(int h = 0) : bold(h) {}virtual void Speak() const {cout << "I am a grand class!\n";}virtual int Value() const {return bold;}
};class Superb : public Grand
{public:Superb(int h = 0) : Grand(h) {}void Speak() const {cout << "I am superb class!!\n";}virtual void Say() const{ cout << "I hold the superb value of " << Value() << "!\n";}
};class Magnificent : public Superb
{private:char ch;public:Magnificent(int h = 0, char c = 'A') :Superb(h), ch(c) {}void Speak() const {cout << "I am a magnificent class!!!\n";}void Say() const {cout << "I hold the character " << ch<< " and the integer " << Value() << "!\n";}
};Grand * GetOne();int main()
{std::srand(std::time(0));Grand * pg;Superb * ps;for ( int i = 0; i < 5; i++){pg = GetOne();pg->Speak();if (ps = dynamic_cast<Superb *>(pg))ps->Say();}return 0;
}Grand * GetOne()
{Grand* p;switch( std::rand() % 3){case 0: p = new Grand(std::rand() % 100);break;case 1: p = new Superb(std::rand() % 100);break;case 2: p = new Magnificent(std::rand() % 100, 'A' + std::rand() % 26);break;}return p;
}
typeid运算符
判断两个对象是否同种类型
例子:
typeid(Magnificent) == typeid(*pg)(接收的参数可以是类名和结果为对象的表达式)
结果为true, 如果不同则返回false
如果pg是空指针 会引发bad_typeid异常。
type_info类:
程序示例
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <typeinfo>
using namespace std;class Grand
{private:int bold;public:Grand(int h = 0) : bold(h) {}virtual void Speak() const {cout << "I am a grand class!\n";}virtual int Value() const {return bold;}
};class Superb : public Grand
{public:Superb(int h = 0) : Grand(h) {}void Speak() const {cout << "I am superb class!!\n";}virtual void Say() const{ cout << "I hold the superb value of " << Value() << "!\n";}
};class Magnificent : public Superb
{private:char ch;public:Magnificent(int h = 0, char c = 'A') :Superb(h), ch(c) {}void Speak() const {cout << "I am a magnificent class!!!\n";}void Say() const {cout << "I hold the character " << ch<< " and the integer " << Value() << "!\n";}
};Grand * GetOne();int main()
{std::srand(std::time(0));Grand * pg;Superb * ps;for ( int i = 0; i < 5; i++){pg = GetOne();cout << "Now processing type " << typeid(*pg).name() << ".\n";pg->Speak();if(ps = dynamic_cast<Superb *>(pg))ps->Say();if (typeid(Magnificent) == typeid(*pg))cout << "Yes, you're really magnificent.\n";}return 0;
}Grand * GetOne()
{Grand* p;switch( std::rand() % 3){case 0: p = new Grand(std::rand() % 100);break;case 1: p = new Superb(std::rand() % 100);break;case 2: p = new Magnificent(std::rand() % 100, 'A' + std::rand() % 26);break;}return p;
}
类型转换运算符
为了更严格的定义类型转换
C++添加了以下4中运算符
dynamic_cast: 这个前面说过了 就是转换前判定是否能够安全转换对象类型
const_cast: 这个只用于一次性。除了将const转换成非const(或转成volatile类型)使用之外 转换成其他类型的都将抛出异常
这个只针对非const 传入到要求const的函数形参中 ,如果本身是const变量的话那是返回空指针
程序示例:
#include <iostream>
using std::cout;
using std::endl;
void change(const int * pt, int n);int main()
{int pop1 = 38383;const int pop2 = 2000;cout << "pop1, pop2: " << pop1 << ", " << pop2 << endl;change(&pop1, -103);change(&pop2, -103);cout << "pop1, pop2: " << pop1 << ", " << pop2 << endl;return 0;
}void change(const int * pt, int n)
{int* pc;pc = const_cast<int *>(pt);*pc += n;
}
运行结果
static_cast: 这个是检测用于被转换的类与将要转换成的类之间有没有关联 是不是基-派生 或者间接基类,间接派生 如果是两个完全不相干的类 则会抛异常
reinterpret_cast:这种是用于转换一些莫名其妙但是有时候又用得到的类型转换:看例子吧
正常不这么干吧 这样转换 好奇怪。
C++中转换的限制:
总结:
这篇关于C++ Primer Plus 学习笔记 第十五章 异常 abort() 返回错误提示,try-throw-catch exception和其派生类 RTTI 类型转换运算符的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!