Python基础第九篇(Python可视化的开发)

2024-01-24 07:44

本文主要是介绍Python基础第九篇(Python可视化的开发),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、json数据格式
    • (1).转换案例代码
    • (2).读出结果
  • 二、pyecharts模块介绍
  • 三、pyecharts模块入门
    • (1).pyecharts模块安装
    • (2).pyecharts模块操作
      • (1).代码
      • (2).读出结果
  • 四、数据处理
  • 五、创建最终折线图

本篇博客将把你带入Python开发的世界,尤其是与json数据格式和pyecharts模块相关的知识。我们将从json数据的格式和转换开始,深入探讨Python语言如何处理这种常用的数据格式。博客的后半部分将集中在pyecharts模块,首先介绍它的基本功能,然后通过实例教学,全面展示如何使用这个强大的绘图库制作折线图。在最后一部分,我们将将这些理论知识运用到实际的数据处理过程中,并创建出自己的折线图。无论你是Python的初学者,还是想增进对这两个主题理解的资深开发者,我相信这篇博客都会为你提供有价值的信息。让我们开始吧!

一、json数据格式

**加粗样式
在这里插入图片描述
json中的数据格式与Python相似看作字典就好也可以是列表中嵌套字典
在这里插入图片描述
在这里插入图片描述

(1).转换案例代码

代码如下(示例):

"""演示json数据转换Python数据
"""
import json# 准备一个列表,将数据转换成jsin类型
date=[{"id":"张三","age":35},{"id":"李四","age":25},{"id":"王五","age":29}]
json_str=json.dumps(date,ensure_ascii=False)
print(json_str)
print(type(json_str))
# 准备一个字典,将字典转成json
dates = {"id":"张三","age":35}
json_str=json.dumps(dates,ensure_ascii=False)
print(json_str)
print(type(json_str))
# 将json字符串数据转成python数据
s='[{"id":"张三","age":35},{"id":"李四","age":25},{"id":"王五","age":29}]'
l=json.loads(s)
print(l)
print(type(l))

(2).读出结果

代码如下(示例):

<class 'str'>
{"id": "张三", "age": 35}
<class 'str'>
[{'id': '张三', 'age': 35}, {'id': '李四', 'age': 25}, {'id': '王五', 'age': 29}]
<class 'list'>

二、pyecharts模块介绍

在这里插入图片描述
pyecharts官网https://05x-docs.pyecharts.org/#/

三、pyecharts模块入门

在这里插入图片描述

(1).pyecharts模块安装

在这里插入图片描述

(2).pyecharts模块操作

(1).代码

代码如下(示例):

"""演示pyecharts的基础入门
"""
# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts
# 创建一个折线图对象
line = Line()
# 给折线图对象添加x轴的数据
line.add_xaxis(["中国","美国","英国"])
# 给折线图对象添加y轴的数据
line.add_yaxis("GDP",[30,20,10])
# 设置全局配置项
line.set_global_opts(title_opts=TitleOpts(title="GDP展示",pos_left="center",pos_bottom="1%"))
# 通过render方法,将代码生成为图像
line.render()

(2).读出结果

在这里插入图片描述

四、数据处理

于专门处理数据的网站中处理例如:
1,在线懒人工具ab73.com
2,Google数据集搜索引擎https://datasetsearch.research.google.com/
3,Kaggle 数据集https://www.kaggle.com/datasets
因不同网站的使用方法不同且数据不变展示,对于此步骤不做过多介绍

五、创建最终折线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Python基础第九篇(Python可视化的开发)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638993

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应