Python基础第九篇(Python可视化的开发)

2024-01-24 07:44

本文主要是介绍Python基础第九篇(Python可视化的开发),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、json数据格式
    • (1).转换案例代码
    • (2).读出结果
  • 二、pyecharts模块介绍
  • 三、pyecharts模块入门
    • (1).pyecharts模块安装
    • (2).pyecharts模块操作
      • (1).代码
      • (2).读出结果
  • 四、数据处理
  • 五、创建最终折线图

本篇博客将把你带入Python开发的世界,尤其是与json数据格式和pyecharts模块相关的知识。我们将从json数据的格式和转换开始,深入探讨Python语言如何处理这种常用的数据格式。博客的后半部分将集中在pyecharts模块,首先介绍它的基本功能,然后通过实例教学,全面展示如何使用这个强大的绘图库制作折线图。在最后一部分,我们将将这些理论知识运用到实际的数据处理过程中,并创建出自己的折线图。无论你是Python的初学者,还是想增进对这两个主题理解的资深开发者,我相信这篇博客都会为你提供有价值的信息。让我们开始吧!

一、json数据格式

**加粗样式
在这里插入图片描述
json中的数据格式与Python相似看作字典就好也可以是列表中嵌套字典
在这里插入图片描述
在这里插入图片描述

(1).转换案例代码

代码如下(示例):

"""演示json数据转换Python数据
"""
import json# 准备一个列表,将数据转换成jsin类型
date=[{"id":"张三","age":35},{"id":"李四","age":25},{"id":"王五","age":29}]
json_str=json.dumps(date,ensure_ascii=False)
print(json_str)
print(type(json_str))
# 准备一个字典,将字典转成json
dates = {"id":"张三","age":35}
json_str=json.dumps(dates,ensure_ascii=False)
print(json_str)
print(type(json_str))
# 将json字符串数据转成python数据
s='[{"id":"张三","age":35},{"id":"李四","age":25},{"id":"王五","age":29}]'
l=json.loads(s)
print(l)
print(type(l))

(2).读出结果

代码如下(示例):

<class 'str'>
{"id": "张三", "age": 35}
<class 'str'>
[{'id': '张三', 'age': 35}, {'id': '李四', 'age': 25}, {'id': '王五', 'age': 29}]
<class 'list'>

二、pyecharts模块介绍

在这里插入图片描述
pyecharts官网https://05x-docs.pyecharts.org/#/

三、pyecharts模块入门

在这里插入图片描述

(1).pyecharts模块安装

在这里插入图片描述

(2).pyecharts模块操作

(1).代码

代码如下(示例):

"""演示pyecharts的基础入门
"""
# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts
# 创建一个折线图对象
line = Line()
# 给折线图对象添加x轴的数据
line.add_xaxis(["中国","美国","英国"])
# 给折线图对象添加y轴的数据
line.add_yaxis("GDP",[30,20,10])
# 设置全局配置项
line.set_global_opts(title_opts=TitleOpts(title="GDP展示",pos_left="center",pos_bottom="1%"))
# 通过render方法,将代码生成为图像
line.render()

(2).读出结果

在这里插入图片描述

四、数据处理

于专门处理数据的网站中处理例如:
1,在线懒人工具ab73.com
2,Google数据集搜索引擎https://datasetsearch.research.google.com/
3,Kaggle 数据集https://www.kaggle.com/datasets
因不同网站的使用方法不同且数据不变展示,对于此步骤不做过多介绍

五、创建最终折线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Python基础第九篇(Python可视化的开发)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638993

相关文章

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1