论文阅读:Vary论文阅读笔记

2024-01-24 05:04
文章标签 笔记 阅读 论文 vary

本文主要是介绍论文阅读:Vary论文阅读笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 引言
    • 整体结构图
    • 数据集构造
      • Vary-tiny部分
        • Document Data数据构造
        • Chart Data构造
        • Negative natural image选取
      • Vary-base部分
        • 文档数据
        • 语义相关的图表数据渲染
        • General Data
    • 写在最后

引言

论文:Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models

Paper | Github | Demo

许久不精读论文了,内心一直想找个专门的时间来细细品读自己感兴趣的论文。现在想来,无异于是自己骗自己了,因为根本就不存在那个专门的时间。所以改变最好的时候就是现在。

因为自己一直在做OCR相关,因为对LLM中文档智能相关的工作比较感兴趣。因此,就以旷视出的这篇工作Vary作为切入点,借此来学习LLM在文档智能领域的相关工作。

整体结构图

Vary
Figure 1:主要想说明Vary在产生vocabulary时,采用两阶段策略:在第一阶段,通过自回归方法,先产生一个新的vocabulary,在第二阶段,将新的vocabulary与原始的融合,作为一个新的vocabulary。

在这里插入图片描述

Figure 2: 第一阶段中,Vary为Vary-tiny,主要用来产生新的vocabulary;而Vary-base主要基于new vision vocabulary来处理各种visual tasks。
在这里插入图片描述
Vary-tiny中,使用在VIT-Det上预训练过的SAM作为image encoder,为了和之后CLIP-L对齐,又加了两个Conv。

Vary这篇工作整体思路较为简单,更多地方就要去看源码的细节实现了。

🤮 不过想要吐槽一下的是,论文中竟然和Nougat作比较。Vary和Nougat参数量来看简直不是一个量级啊。转过来想,也是,毕竟这个方向目前也没有一个除Nougat之外的基线了。

数据集构造

之所以将这部分作为一个单独章节来说,是因为这个工作的难点就在于此。Nougat和Vary都没有开源所用的数据集。Nougat好在给出了一些制作数据集的相关代码。Vary目前一点也没有放出来。所以这里也就只能根据论文来简单看看怎么做的了。

Vary-tiny部分

该部分主要聚焦于fine-grained perception,例如文档智能和图表理解,说是为了弥补CLIP的不足,因此这部分网络输入都是图像,没有文本输入的分支。

在训练Vary-tiny部分,作者将文档和图表数据作为positive samples,自然场景图像作为negative数据。

Document Data数据构造

由于该部分需要的数据为:输入是文档图像,输出是对应的markdown格式文本。目前没有公开的中英文文档数据集,因为作者自行构建的。

其中,英文文档主要来源于arXiv和CC-MAIN-2021-31-PDFUNTRUNCATED两部分。中文文档主要来源于互联网上的电子书。

处理方法:PyMuPDF库提取PDF每页信息,同时用pdf2image工具将PDF对应页转为图像。(感觉这里处理的较为粗糙,有较大提升空间)

最终构建了100w中文和100w英文文档图像对,用于训练Vary-tiny部分。

Chart Data构造

作者观察到LVLM不太擅长处理图表理解问题,尤其是中文图表。因此,本篇工作着重将其作为一个重点任务。

构建图表的image-text pair对方案:采用matplotlibpyecharts作为渲染工具。渲染了matplotlib风格的中英文图表250k条,渲染了pyeharts风格中英文图表500k条。另外,构建图表的ground truth为一个python字典形式。其中图表中的文本,例如title, x-axis和y-axis都是从NLP语料库中随机选的。

论文中给出了一些图表推理结果样例:

在这里插入图片描述

Negative natural image选取

因为CLIP-VIT对于自然图像较为擅长。为了确保新引入的vocabulary不影响已有效果,因此,作者在训练Vary-Tiny时,引入了自然图像作为negative image-text pairs。

作者从COCO数据集中选取了120k图像,其所对应的文本从以下几条中随机选取:

“It’s an image of nature”;
“Here’s a nature picture”;
“It’s a nature photo”;
“This is a natural image”;
“That’s a shot from nature”.

Vary-base部分

Figure4

文档数据

上述收集到的文档数据,直接提取的PDF中文本信息。所以数据中更多的是文本数据,表格和公式类型较少。因此在训练Vary-base阶段,作者采用LaTeX来渲染了一批比较有针对性的数据。具体做法如下:

  1. 收集一些arXiv上tex文件源文件,使用正则提取其中的表格、数学公式和文本内容
  2. 将以上内容重新用pdflatex工具渲染到新的模板上。作者整理了10+模版。

作者将图像对应的ground truth存储在mmd格式中。mmd格式是一种加强版的md格式,可以直接渲染md中的LaTeX代码编写的表格和公式。

最终,作者收集整理了50w英文数据和40w中文数据。

语义相关的图表数据渲染

在Vary-tiny阶段,作者批量渲染了图表数据来训练Vary-tiny中的vocabulary。但是那些数据存在标题、横纵坐标语义相关性较差的问题。因此,在本阶段,作者使用了GPT-4来产生语义相关性较强的语料来渲染高质量的图表数据。

不得不说,这一步很有借鉴意义的。

General Data

该部分使用的数据分为两部分:

  • 预训练阶段:使用的来自LAION-COCO的image-text pair数据
  • SFT阶段:使用的LLaVA-80k和LLaVA-CC665k

写在最后

本来还想结合论文源码来进一步查看做法的。一直没有找到合适的表达方法来合理有序地表达代码和论文的关系。暂时搁置。

刚才看Vary源码,发现作者更新了两个新的工作:Vary-toy和 Vary-Family系列,两者关系如下:

在这里插入图片描述
值得期待和学习。

这篇关于论文阅读:Vary论文阅读笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638605

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓