复现NAS with RL时pytorch的相关问题

2024-01-23 23:44
文章标签 问题 相关 pytorch 复现 rl nas

本文主要是介绍复现NAS with RL时pytorch的相关问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

optimizer.zero_grad()是什么?

optimizer.zero_grad()是PyTorch中的一个操作,它用于清零所有被优化变量(通常是模型的参数)的梯度。

在PyTorch中,当你计算某个张量的梯度时(比如通过调用.backward()函数),这个梯度会被累积到.grad属性中,而不是被替换掉。这意味着,每次计算梯度,新的梯度值会被加上旧的梯度值。

如果在反向传播前不将梯度清零,那么梯度值将会在每次.backward()传播时不断累积,这往往不是我们希望看到的。为了确保正确的计算,我们需要在每次进行权重更新之前,用optimizer.zero_grad()将梯度信息清零。

以下是一个例子,用于更好地展示optimizer.zero_grad()的作用。考虑一个简单的线性模型:

model = nn.Linear(2, 2)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)# 第一次反向传播
loss1 = model(torch.randn(1, 2)).sum()
loss1.backward()
print(model.weight.grad)  # 输出:tensor([[ 0.1734, -0.3710], ...])
optimizer.step()  # 更新权重# 第二次反向传播,没有清空梯度
loss2 = model(torch.randn(1, 2)).sum()
loss2.backward()
print(model.weight.grad)  # 输出:tensor([[ 0.2811, -0.5524], ...])
optimizer.step()# 这一次我们清空了梯度
optimizer.zero_grad()
loss3 = model(torch.randn(1, 2)).sum()
loss3.backward()
print(model.weight.grad)  # 输出:tensor([[ 0.1077, -0.1814], ...])
optimizer.step()

可以看到,如果不使用optimizer.zero_grad(),得到的梯度值是累积的结果,这在大多数优化场景中是不正确的。而使用了optimizer.zero_grad()后,每次计算后得到的是当前情况下的准确梯度。

所有优化器都实现了一个step()方法,用于更新参数:optimizer.step()

这是大多数优化器支持的简化版本。一旦使用backward()计算出梯度,就可以调用该函数。

这篇关于复现NAS with RL时pytorch的相关问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637903

相关文章

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

解决JavaWeb-file.isDirectory()遇到的坑问题

《解决JavaWeb-file.isDirectory()遇到的坑问题》JavaWeb开发中,使用`file.isDirectory()`判断路径是否为文件夹时,需要特别注意:该方法只能判断已存在的文... 目录Jahttp://www.chinasem.cnvaWeb-file.isDirectory()遇

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

MySQL的cpu使用率100%的问题排查流程

《MySQL的cpu使用率100%的问题排查流程》线上mysql服务器经常性出现cpu使用率100%的告警,因此本文整理一下排查该问题的常规流程,文中通过代码示例讲解的非常详细,对大家的学习或工作有一... 目录1. 确认CPU占用来源2. 实时分析mysql活动3. 分析慢查询与执行计划4. 检查索引与表

MySQL报错sql_mode=only_full_group_by的问题解决

《MySQL报错sql_mode=only_full_group_by的问题解决》本文主要介绍了MySQL报错sql_mode=only_full_group_by的问题解决,文中通过示例代码介绍的非... 目录报错信息DataGrip 报错还原Navicat 报错还原报错原因解决方案查看当前 sql mo

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed