Linux-4.20.8内核桥收包源码解析(五)----------桥处理流程br_handle_frame

2024-01-23 20:58

本文主要是介绍Linux-4.20.8内核桥收包源码解析(五)----------桥处理流程br_handle_frame,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:lwyang?
内核版本:Linux-4.20.8

网桥是一种2层网络互连设备,而不是一种网络协议。它在协议结构上并没有占有一席之地,因此不能通过向协议栈注册协议的方式来申请网桥数据包的处理。相反,网桥接口的数据包和一般接口(如eth0)在格式上完全是一样的,不同之处是网桥在2层上就对它进行了转了,而一般接口要在3层 才能根据路由信息来决定是否要转发,如何转发。

linux内核是通过一个虚拟的网桥设备来实现桥接的。这个虚拟设备可以绑定若干个以太网接口设备,从而将它们桥接起来。如下图(摘自ULNI):
在这里插入图片描述
网桥设备br0绑定了eth0eth1。对于网络协议栈的上层来说,只看得到br0,因为桥接是在数据链路层实现的,上层不需要关心桥接的细节。于是协议栈上层需要发送的报文被送到br0,网桥设备的处理代码再来判断报文该被转发到eth0或是eth1,或者两者皆是;反过来,从eth0或从eth1接收到的报文被提交给网桥的处理代码,在这里会判断报文该转发、丢弃、或提交到协议栈上层

linux内核支持网口的桥接(目前只支持以太网接口)。但是与单纯的交换机不同,交换机只是一个二层设备,对于接收到的报文,要么转发、要么丢弃。小型的交换机里面只需要一块交换芯片即可,并不需要CPU。而运行着linux内核的机器本身就是一台主机,有可能就是网络报文的目的地。其收到的报文除了转发和丢弃,还可能被送到网络协议栈的上层(网络层),从而被自己消化

rx_handler_result_t br_handle_frame(struct sk_buff **pskb)
{struct net_bridge_port *p;struct sk_buff *skb = *pskb;//获取数据包的目的mac地址const unsigned char *dest = eth_hdr(skb)->h_dest;//开启ebtables时br_should_route_hook_t *rhook;//如果是本地环回包则跳过桥处理,直接返回if (unlikely(skb->pkt_type == PACKET_LOOPBACK))return RX_HANDLER_PASS;//源mac地址无效则丢弃if (!is_valid_ether_addr(eth_hdr(skb)->h_source))goto drop;//判断skb是否共享(skb->users!=1 ?),如果是共享则克隆一份,并将原skb的引用计数-1(skb->users-1)//如果不克隆则会影响共享此skb的其他函数,如果此skb为不共享,则直接返回此skbskb = skb_share_check(skb, GFP_ATOMIC);if (!skb)return RX_HANDLER_CONSUMED;//获取net_bridge_port网桥接口(dev->rx_handler_data),在br_add_if中赋值的,见上节桥处理函数的注册p = br_port_get_rcu(skb->dev);if (p->flags & BR_VLAN_TUNNEL) {if (br_handle_ingress_vlan_tunnel(skb, p,nbp_vlan_group_rcu(p)))goto drop;}//如果目的mac地址是本地链路地址link local reserved addr (01:80:c2:00:00:0X) STP报文if (unlikely(is_link_local_ether_addr(dest))) {u16 fwd_mask = p->br->group_fwd_mask_required;/** See IEEE 802.1D Table 7-10 Reserved addresses** Assignment		 		Value* Bridge Group Address		01-80-C2-00-00-00* (MAC Control) 802.3		01-80-C2-00-00-01* (Link Aggregation) 802.3	01-80-C2-00-00-02* 802.1X PAE address		01-80-C2-00-00-03** 802.1AB LLDP 		01-80-C2-00-00-0E** Others reserved for future standardization*/fwd_mask |= p->group_fwd_mask;switch (dest[5]) {case 0x00:	/* Bridge Group Address *//* If STP is turned off,then must forward to keep loop detection */if (p->br->stp_enabled == BR_NO_STP ||fwd_mask & (1u << dest[5]))goto forward;*pskb = skb;__br_handle_local_finish(skb);return RX_HANDLER_PASS;case 0x01:	/* IEEE MAC (Pause) */goto drop;case 0x0E:	/* 802.1AB LLDP */fwd_mask |= p->br->group_fwd_mask;if (fwd_mask & (1u << dest[5]))goto forward;*pskb = skb;__br_handle_local_finish(skb);return RX_HANDLER_PASS;default:/* Allow selective forwarding for most other protocols */fwd_mask |= p->br->group_fwd_mask;if (fwd_mask & (1u << dest[5]))goto forward;}/* Deliver packet to local host only */NF_HOOK(NFPROTO_BRIDGE, NF_BR_LOCAL_IN, dev_net(skb->dev),NULL, skb, skb->dev, NULL, br_handle_local_finish);return RX_HANDLER_CONSUMED;}//p->flags = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD
forward://STP的五种状态switch (p->state) {//网桥端口处于转发状态case BR_STATE_FORWARDING://ebtables获取路由的hook点rhook = rcu_dereference(br_should_route_hook);if (rhook) {//转发数据包,然后返回if ((*rhook)(skb)) {*pskb = skb;return RX_HANDLER_PASS;}dest = eth_hdr(skb)->h_dest;}/* fall through *///网桥端口处于学习状态,处于BR_STATE_FORWARDING 状态也会执行下面的代码,因为上面的case没有breakcase BR_STATE_LEARNING://数据包目的mac地址等于网桥的mac地址,属于发往本地的数据包if (ether_addr_equal(p->br->dev->dev_addr, dest))skb->pkt_type = PACKET_HOST;//进入NF_BR_PRE_ROUTING钩子点,最后调用br_handle_frame_finish函数NF_HOOK(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING,dev_net(skb->dev), NULL, skb, skb->dev, NULL,br_handle_frame_finish);break;default:
drop:kfree_skb(skb);}//最后返回RX_HANDLER_CONSUMED 表明我们在桥上已经处理了此数据包,原__netif_receive_skb_core应当直接返回return RX_HANDLER_CONSUMED;
}

br_handle_frame函数中,主要就是将数据包放入NF_BR_PRE_ROUTING 钩子点,如有特殊的报文STP报文会直接放入NF_BR_LOCAL_IN交给上层处理

那么接下来数据包会进入NF_BR_PRE_ROUTING链进行处理,若我们在NF_BR_PRE_ROUTING链注册了自己的hook函数,则会根据按优先级处理我们的hook函数,若注册的hook函数返回值都为NF_ACCEPT,然后最后会调用br_handle_frame_finish决定数据包是转发还是发往本地

这篇关于Linux-4.20.8内核桥收包源码解析(五)----------桥处理流程br_handle_frame的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637502

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动