《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机

2024-01-23 13:44

本文主要是介绍《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 第 2章感知机
    • 2.1 感知机模型
    • 2.2 感知机学习策略
      • 2.2.1 数据集的线性可分性
      • 2.2.2 感知机学习策略
    • 2.3 感知机学习算法
      • 2.3.1 感知机学习算法的原始形式
      • 2.3.2 算法的收敛性
      • 2.3.3 感知机学习算法的对偶形式
    • 实践:二分类模型(iris数据集)
      • 数据集可视化:
      • Perceptron
      • scikit-learn实例

《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第1章 统计学习方法概论

我算是有点基础的(有过深度学习和机器学的项目经验),但也是半路出家,无论是学Python还是深度学习,都是从问题出发,边查边做,没有系统的学过相关的知识,这样的好处是入门快(如果想快速入门,大家也可以试试,直接上手项目,从小项目开始),但也存在一个严重的问题就是,很多东西一知半解,容易走进死胡同出不来(感觉有点像陷入局部最优解,找不到出路),所以打算系统的学习几本口碑比较不错的书籍。
  书籍选择: 当然,机器学习相关的书籍有很多,很多英文版的神书,据说读英文版的书会更好,奈何英文不太好,比较难啃。国内也有很多书,周志华老师的“西瓜书”我也有了解过,看了前几章,个人感觉他肯能对初学者更友好一点,讲述的非常清楚,有很多描述性的内容。对比下来,更喜欢《统计学习方法》,毕竟能坚持看完才最重要。
  笔记内容: 笔记内容尽量省去了公式推导的部分,一方面latex编辑太费时间了,另一方面,我觉得公式一定要自己推到一边才有用(最好是手写)。尽量保留所有标题,但内容会有删减,通过标黑和列表的形式突出重点内容,要特意说一下,标灰的部分大家最好读一下(这部分是我觉得比较繁琐,但又不想删掉的部分)。
  代码实现: 最后是本章内容的实践,如果想要对应的.ipynb文件,可以留言

第 2章感知机

  感知机 (perceptron) 是二类分类的线性分类模型,其输入为实例的特征向量,输 出为实例的类别,取 +1 和-1 二值。

  感知机对应于输入空间(特征空间)中将实例划 分为正负两类的分离超平面,属于判别模型

  感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此:

  • 导入基于误分类的损失函数,
  • 利用梯度下降法对损失函 数进行极小化,求得感知机模型。

  感知机学习算法具有简单而易于实现的优点,分为 原始形式对偶形式。

2.1 感知机模型

  感知机是一种线性分类模型,属于判别模型。

  感知机模型的假设空间是定义在特征空间中的所有线性分类模型(linear classification modeD 或线性分类器 (linear classifier) ,即函数集合

f ∣ f ( x ) = ω • x + b {{f|f(x) = ω • x + b}} ff(x)=ωx+b

几何解释:线性方程

ω ⋅ x + b = 0 ω\cdot x+b=0 ωx+b=0

  对应于特征空间 R n R^n Rn 中的一个超平面 S , 其中 ω超平面的法向量b超平面的截距

  这个超平面将特征空间划分为两个部分。位于两部分的点(特征向量)分别被分为 正、负两类。因此,超平面 S称为分离超平面 (separating hyperplane) ,如图 2.1 所示。

2.2 感知机学习策略

2.2.1 数据集的线性可分性

  给定一个数据集T:

T = ( x l , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) T = {(x_l ,y_1), (x_2 ,y_2) ,… , (x_n,y_n)} T=(xl,y1),(x2,y2),,(xn,yn)

  其中 , x i ∈ X = R n , y i ∈ Y = ( + 1 , − 1 ) , i = 1 , 2 , … , n x_i \in X = R^n, y_i \in Y=(+1 ,-1) , i= 1 , 2,… , n xiX=Rn,yiY=(+1,1)i=12n

  如果存在某个超乎面 S

ω ⋅ x + b = 0 ω\cdot x+b=0 ωx+b=0

  能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,则称数据集 T 为线性可分数据集( linearly separable data set ) ;否则,称数据集 T 线性不可分

2.2.2 感知机学习策略

  假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练集正实例点和负实例点完全正确分开分离超平面
在这里插入图片描述

  损失函数的一个自然选择是误分类点的总数。但是,这样的损失函数不是连续可导函数,不易优化。损失函数的另一个选择是误分类点到超平面 S 的总距离

  • 输入空间 R n R^n Rn 中任一 x o x_o xo 到超平面 S S S 的 距离:

1 ∣ ∣ w ∣ ∣ ∣ w ⋅ x 0 + b ∣ \frac{1}{||w||}|w \cdot x_0+b| ∣∣w∣∣1wx0+b

  • 对于误分类的数据 ( x i , x i ) (x_i,x_i) (xi,xi) 来说,

− y i ( ω ⋅ x i + b ) > O -y_i(ω \cdot x_i+b)>O yi(ωxi+b)>O

  • ω • x i + b > 0 ω • x_i + b > 0 ωxi+b>0 时 , y i = − 1 y_i = -1 yi=1
  • ω • x i + b < 0 ω • x_i + b < 0 ωxi+b<0 时, x i = + 1 x_i = +1 xi=+1
  • 所有误分类点超平面 S总 距离

− 1 ∣ ∣ w ∣ ∣ ∑ x i ∈ M y i ( w ⋅ x 0 + b ) -\frac{1}{||w||}\sum_{x_i\in M}y_i(w \cdot x_0+b) ∣∣w∣∣1xiMyi(wx0+b)

  感知机 s i g n ( w • x + b ) sign(w • x + b) sign(wx+b) 学习的损失函数定义为:

L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x 0 + b ) L(w,b)=-\sum_{x_i\in M}y_i(w \cdot x_0+b) L(w,b)=xiMyi(wx0+b)

  其中 M 为误分类点的集合。

  这个损失函数就是感知机学习的经验风险函数。

2.3 感知机学习算法

  感知机学习问题转化为求解损失函数式的最优化问题,最优化的方法是随 机梯度下降法。

2.3.1 感知机学习算法的原始形式

求参数 w , b w, b wb , 使其为以下损失函数极小化问题的解:

m i n w , b L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) min_{w,b}L(w,b)=-\sum_{x_i\in M}y_i(w \cdot x_i+b) minw,bL(w,b)=xiMyi(wxi+b)

  其中 M 为误分类点的集合。

求解思路:

  • 感知机学习算法是误分类驱动的,具体采用随机梯度下降法 (stochastic gradient descent)。
  • 首先,任意选取一个超平面 w 0 , b 0 w_0,b_0 w0,b0 , 然后用梯度下降法不断地极小化目标函数(损失函数)
  • 极小化过程中不是一次使M 中所有误分类点的梯度下降,而是一次随机 选取一个误分类点使其梯度下降
  • 假设误分类点集合 M 是固定的,那么损失函数 L ( w , b ) L(w,b) L(w,b)梯度由下式给出:

∇ w L ( w , b ) = − ∑ x i ∈ M y i x i \nabla_w L(w,b)=-\sum_{x_i\in M}{y_ix_i} wL(w,b)=xiMyixi

∇ b L ( w , b ) = − ∑ x i ∈ M y i \nabla _b L(w,b)=-\sum_{x_i\in M}{y_i} bL(w,b)=xiMyi

  • 随机选取一个误分类点 ( x i , y i ) (x_i,y_i) xi,yi ω , b ω, b ωb 进行更新:

w ← w + η y i x i w\leftarrow w+ηy_ix_i ww+ηyixi

b ← b + η y i b \leftarrow b+ηy_i bb+ηyi

  式中 η ( 0 < η ≤ 1 ) η(0 <η\leq1) η(0<η1) 是步长,在统计学习中又称为学习率(learning rate) 。

在这里插入图片描述

  这种学习算法直观上有如下解释:

  当一个实例点被误分类,即位于分离超平面的 错误一侧时,则调整 ω, b 的值,使分离超平面向该误分类点的一侧移动,以减少该误分类点与超平面间的距离,直至超平面越过该误分类点使其被正确分类。

2.3.2 算法的收敛性

在这里插入图片描述

  定理表明,误分类的次数 k 是有上界的,经过有限次搜索可以找到将训练数据完 全正确分开的分离超平面。也就是说,当训练数据集线性可分时,感知机学习算法原 始形式迭代是收敛的。

2.3.3 感知机学习算法的对偶形式

  对偶形式的基本想法是,将 ω ω ω b b b 表示为实例 x i x_i xi标记 y i y_i yi线性组合的形式, 通过求解其系数而求得 ω ω ω b b b

在这里插入图片描述

  对偶形式中训练实例仅以内积的形式出现。

  为了方便,可以预先将训练集中实例间的内积计算出来并以矩阵的形式存储,这个矩阵就是所谓的 Gram 矩阵 (Gram matrix):
G = [ x i ⋅ x i ] N × N G=[x_i \cdot x_i]_{N \times N} G=[xixi]N×N

实践:二分类模型(iris数据集)

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
%matplotlib inline
#load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
df.label.value_counts()
=========================
2    50
1    50
0    50
Name: label, dtype: int64

数据集可视化:

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
y = np.array([1 if i == 1 else -1 for i in y])

Perceptron

# 数据线性可分,二分类数据
# 此处为一元一次线性方程
class Model:def __init__(self):self.w = np.ones(len(data[0]) - 1, dtype=np.float32)self.b = 0self.l_rate = 0.1# self.data = datadef sign(self, x, w, b):y = np.dot(x, w) + breturn y# 随机梯度下降法def fit(self, X_train, y_train):is_wrong = Falsewhile not is_wrong:wrong_count = 0for d in range(len(X_train)):X = X_train[d]y = y_train[d]if y * self.sign(X, self.w, self.b) <= 0:self.w = self.w + self.l_rate * np.dot(y, X)self.b = self.b + self.l_rate * ywrong_count += 1if wrong_count == 0:is_wrong = Truereturn 'Perceptron Model!'def score(self):pass

训练

perceptron = Model()
perceptron.fit(X, y)
===============================
'Perceptron Model!'

分类&可视化

x_points = np.linspace(4, 7, 10)
y_ = -(perceptron.w[0] * x_points + perceptron.b) / perceptron.w[1]
plt.plot(x_points, y_)plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

scikit-learn实例

import sklearn
from sklearn.linear_model import Perceptron
===============
sklearn.__version__
'0.21.2'
clf = Perceptron(fit_intercept=True, max_iter=1000, shuffle=True)
clf.fit(X, y)
=================================
Perceptron(alpha=0.0001, class_weight=None, early_stopping=False, eta0=1.0,fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None,penalty=None, random_state=0, shuffle=True, tol=0.001,validation_fraction=0.1, verbose=0, warm_start=False)
# Weights assigned to the features.
print(clf.coef_)
===============================
[[ 23.2 -38.7]]
# 截距 Constants in decision function.
print(clf.intercept_)
================================
[-5.]

可视化

# 画布大小
plt.figure(figsize=(10,10))# 中文标题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')plt.scatter(data[:50, 0], data[:50, 1], c='b', label='Iris-setosa',)
plt.scatter(data[50:100, 0], data[50:100, 1], c='orange', label='Iris-versicolor')# 画感知机的线
x_ponits = np.arange(4, 8)
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)# 其他部分
plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

注意 !

在上图中,有一个位于左下角的蓝点没有被正确分类,这是因为 SKlearn 的 Perceptron 实例中有一个tol参数。

tol 参数规定了如果本次迭代的损失和上次迭代的损失之差小于一个特定值时,停止迭代。所以我们需要设置 tol=None 使之可以继续迭代:

clf = Perceptron(fit_intercept=True, max_iter=1000,tol=None,shuffle=True)
clf.fit(X, y)# 画布大小
plt.figure(figsize=(10,10))# 中文标题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')plt.scatter(data[:50, 0], data[:50, 1], c='b', label='Iris-setosa',)
plt.scatter(data[50:100, 0], data[50:100, 1], c='orange', label='Iris-versicolor')# 画感知机的线
x_ponits = np.arange(4, 8)
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)# 其他部分
plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

现在可以看到,所有的两种鸢尾花都被正确分类了。

这篇关于《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636583

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi