关于缓存 db redis local 取舍之道

2024-01-23 09:36

本文主要是介绍关于缓存 db redis local 取舍之道,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、影响因素
  • 二、db or redis or local
    • 1.db
    • 2.redis
    • 3. local
  • 三、redisson 和 CaffeineCache 封装
    • 3.1 redisson
      • 3.1.1 maven
      • 3.1.2 封装
      • 3.1.3 使用
    • 3.2 CaffeineCache
      • 3.1.1 maven
      • 3.1.2 封装
      • 3.1.3 使用
  • 总结


前言

让我们来聊一下数据缓存,它是如何为我们带来快速的数据响应的。你知道吗,为了提高数据的读取速度,我们通常会引入数据缓存。但是,你知道吗,不是所有的数据都适合缓存,有些数据更适合直接从数据库查询。现在,我们就来一起讨论一下,什么样的数据适合直接从数据库查询,什么样的数据适合从缓存中读取。这将有助于我们更好地利用缓存,提高系统的性能。让我们开始吧!

一、影响因素

当涉及到数据查询和缓存时,有几个因素可以考虑来确定什么样的数据适合直接从数据库查询,什么样的数据适合从缓存中读取。

  • 访问频率:如果某个数据被频繁访问,且对实时性要求不高,那么将其缓存在内存中会显著提高响应速度。这样的数据可以是经常被查询的热点数据,比如网站的热门文章、商品信息等。

  • 数据更新频率:如果某个数据经常发生更新,那么将其缓存可能导致缓存和数据库中的数据不一致。对于这种情况,最好直接从数据库中查询最新数据。比如用户个人信息、订单状态等经常变动的数据。

  • 数据大小:较大的数据对象,如图片、视频等,由于其体积较大,将其缓存到内存中可能会占用大量资源。这种情况下,可以将这些数据存储在分布式文件系统或云存储中,并通过缓存存储其访问路径或标识符。

  • 数据一致性:一些数据在不同地方的多个副本可能会导致一致性问题。对于需要保持强一致性的数据,建议直接从数据库查询。而对于可以容忍一定程度的数据不一致的场景,可以考虑将数据缓存。

  • 查询复杂度:某些复杂的查询操作可能会消耗大量的计算资源和时间,如果这些查询结果需要频繁访问,可以将其缓存,避免重复计算,提高响应速度。

需要注意的是,数据缓存并非适用于所有情况。缓存的使用需要谨慎,需要权衡数据的实时性、一致性和存储成本等方面的需求。此外,对于缓存数据的更新和失效策略也需要考虑,以确保缓存数据的准确性和及时性。

综上所述,数据适合直接从数据库查询还是缓存读取,取决于数据的访问频率、更新频率、大小、一致性要求和查询复杂度等因素。在实际应用中,需要根据具体情况进行综合考虑和合理选择。

二、db or redis or local

1.db

  • 查询复杂度低
  • 字段少
  • sql执行效率高
  • 实时性高

通常数据库适合查询字典类型数据,如类似 key value 键值对,数据更新频繁,实时性高的数据。
对于sql效率高的查询,redis查询不一定比db查询快。

2.redis

  • 查询复杂度高
  • 字段相对不多
  • 实时性低

Redis适合查询复杂度较高、实时性要求较低的数据。当SQL查询效率较低,或者需要进行字段code和value的转换存储时,Redis可以提供更高效的查询方式。不过,需要注意的是,Redis的主要瓶颈在于数据的序列化和反序列化过程。如果数据量较大,包含大量字段或者数据量巨大,那么Redis的查询速度可能不一定比数据库快,当然此时数据库本身执行效率也低。在这种情况下,我们需要综合考虑数据的复杂度、实时性要求以及数据量的大小,选择最适合的查询方式。有时候,可能需要在数据库和Redis之间进行权衡和折中,以找到最佳的性能和效率平衡点。因此,为了提高查询速度,我们需要根据具体的业务需求和数据特性,选择合适的存储和查询方案。

3. local

  • 查询复杂度高
  • 字段多
  • 实时性低

本地缓存通常是最快的。它可以在内存中直接读取数据,速度非常快。然而,由于受限于内存大小,本地缓存的数据量是有限的。对于那些数据库和Redis难以处理的大型数据,我们可以考虑使用本地缓存。通过将一部分频繁访问的数据存储在本地缓存中,可以大大提高系统的响应速度。这样,我们可以在不牺牲太多内存资源的情况下,快速获取到需要的数据。当然,需要注意的是,由于本地缓存的数据是存储在内存中的,所以在服务器重启或缓存过期时,需要重新从数据库或Redis中加载数据到本地缓存中。因此,在使用本地缓存时,需要权衡数据的大小、更新频率以及内存资源的限制,以获得最佳的性能和可用性。

三、redisson 和 CaffeineCache 封装

提供缓存查询封装,查询不到时直接查数据库后存入缓存。

3.1 redisson

3.1.1 maven

        <dependency><groupId>org.redisson</groupId><artifactId>redisson-spring-boot-starter</artifactId></dependency>

3.1.2 封装

import cn.hutool.core.util.ObjectUtil;
import cn.hutool.core.util.StrUtil;
import cn.hutool.json.JSONUtil;
import com.cuzue.common.core.exception.BusinessException;
import com.cuzue.dao.cache.redis.RedisClient;
import org.redisson.api.RBucket;
import org.redisson.api.RKeys;
import org.redisson.api.RedissonClient;import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.function.Supplier;public class RedisCacheProvider {private static RedissonClient redissonClient;public RedisCacheProvider(RedissonClient redissonClient) {this.redissonClient = redissonClient;}/*** 从redissonClient缓存中取数据,如果没有,查数据后存入** @param key         redis key* @param dataFetcher 获取数据* @param ttl         缓存时间* @param timeUnit    缓存时间单位* @param <T>* @return 数据*/public <T> List<T> getCachedList(String key, Supplier<List<T>> dataFetcher, long ttl, TimeUnit timeUnit) {if (ObjectUtil.isNotNull(redissonClient)) {// 尝试从缓存中获取数据List<T> cachedData = redissonClient.getList(key);if (cachedData.size() > 0) {// 缓存中有数据,直接返回return cachedData;} else {// 缓存中没有数据,调用数据提供者接口从数据库中获取List<T> data = dataFetcher.get();cachedData.clear();cachedData.addAll(data);// 将数据存入缓存,并设置存活时间// 获取 bucket 对象,为了设置过期时间RBucket<List<T>> bucket = redissonClient.getBucket(key);// 为整个列表设置过期时间bucket.expire(ttl, timeUnit);// 返回新获取的数据return data;}} else {throw new BusinessException("redissonClient has not initialized");}}/*** 删除缓存** @param key redis key*/public void deleteCachedList(String systemName, String key) {if (ObjectUtil.isNotNull(redissonClient)) {RKeys keys = redissonClient.getKeys();keys.deleteByPattern(key);} else {throw new BusinessException("redis client has not initialized");}}
}

3.1.3 使用

启动类添加:@Import({RedissonConfig.class})
直接引用:


@Resource
private RedissonClient redissonClient;//缓存数据获取
public List<MatMaterialsResp> listCache(ListQO qo) {RedisCacheProvider cache = new RedisCacheProvider(redissonClient);List<MatMaterialsResp> resps = cache.getCachedList("testList", () -> {// 缓存数据查询}, 20, TimeUnit.SECONDS);return resps;
}

3.2 CaffeineCache

也可以使用hashMap

3.1.1 maven

       <dependency><groupId>com.github.ben-manes.caffeine</groupId><artifactId>caffeine</artifactId><version>3.0.5</version></dependency>

3.1.2 封装

CaffeineCache<K, V>

import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.github.benmanes.caffeine.cache.Weigher;import java.util.concurrent.TimeUnit;
import java.util.function.Function;public class CaffeineCache<K, V> {private final Cache<K, V> cache;/*** 不过期缓存** @param maxSize 缓存条目数量 注意对象大小不要超过jvm内存*/public CaffeineCache(long maxSize) {this.cache = Caffeine.newBuilder().maximumSize(maxSize).build();}/*** 初始化Caffeine** @param maxSize* @param expireAfterWriteDuration* @param unit*/public CaffeineCache(long maxSize, long expireAfterWriteDuration, TimeUnit unit) {this.cache = Caffeine.newBuilder().maximumSize(maxSize).expireAfterWrite(expireAfterWriteDuration, unit).build();}/*** 初始化Caffeine 带权重** @param maxSize* @param weigher                  权重* @param expireAfterWriteDuration* @param unit*/public CaffeineCache(long maxSize, Weigher weigher, long expireAfterWriteDuration, TimeUnit unit) {this.cache = Caffeine.newBuilder().maximumSize(maxSize).weigher(weigher).expireAfterWrite(expireAfterWriteDuration, unit).build();}public V get(K key) {return cache.getIfPresent(key);}public void put(K key, V value) {cache.put(key, value);}public void remove(K key) {cache.invalidate(key);}public void clear() {cache.invalidateAll();}// 如果你需要一个加载功能(当缓存miss时自动加载值),你可以使用这个方法public V get(K key, Function<? super K, ? extends V> mappingFunction) {return cache.get(key, mappingFunction);}// 添加获取缓存统计信息的方法public String stats() {return cache.stats().toString();}
}

LocalCacheProvider

import cn.hutool.core.util.ObjectUtil;
import com.cuzue.dao.cache.localcache.CaffeineCache;import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.function.Function;
import java.util.function.Supplier;/*** 本地缓存*/
public class LocalCacheProvider {private static CaffeineCache cache;/*** 无过期时间* @param maxSize 缓存最大条数*/public LocalCacheProvider(long maxSize) {cache = new CaffeineCache(maxSize);}/*** 带过期时间* @param maxSize 缓存最大条数* @param ttl 过期时间* @param timeUnit 时间单位*/public LocalCacheProvider(long maxSize, long ttl, TimeUnit timeUnit) {cache = new CaffeineCache(maxSize, ttl, timeUnit);}public static <T> List<T> getCachedList(String key, Supplier<List<T>> dataFetcher) {if (ObjectUtil.isNotNull(cache.get(key))) {return (List<T>) cache.get(key);} else {List<T> data = dataFetcher.get();cache.put(key, data);return data;}}public static <T> List<T> getCachedList(String key, Function<String, List<T>> dataFetcher) {return (List<T>) cache.get(key, dataFetcher);}/*** 删除缓存** @param key redis key*/public void deleteCachedList(String key) {cache.remove(key);}
}

3.1.3 使用

//初始化caffeine对象
LocalCacheProvider cache = new LocalCacheProvider(5000, 20, TimeUnit.SECONDS);//缓存数据获取
public List<MatMaterialsResp> listLocalCache(ListQO qo) {List<MatMaterialsResp> resps = cache.getCachedList("testList", (s) -> {// 缓存数据查询});return resps;
}

注意:Caffeine 实现的缓存占用 JVM 内存,小心 OutOfMemoryError

解决场景:
1.本地缓存适用不限制缓存大小,导致OOM,适合缓存小对象
2.本地缓存长时间存在,未及时清除无效缓存,导致内存占用资源浪费
3.防止人员api滥用, 未统一管理随意使用,导致维护性差等等

总结

从前的无脑经验,db查询慢,redis缓存起来,redis真不一定快!
一个简单性能测试:(测试响应时间均为二次查询的大概时间)

  1. 前置条件: 一条数据转换需要200ms,共5条数据,5个字段项,数据量大小463 B
db > 1s
redis > 468ms
local > 131ms
  1. 去除转换时间,直接响应
db > 208ms
redis > 428ms
local > 96ms

在这里插入图片描述

这篇关于关于缓存 db redis local 取舍之道的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635970

相关文章

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

[MySQL表的增删改查-进阶]

🌈个人主页:努力学编程’ ⛅个人推荐: c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 💻💻💻数据库约束 🔭🔭🔭约束类型 not null: 指示某列不能存储 NULL 值unique: 保证某列的每行必须有唯一的值default: 规定没有给列赋值时的默认值.primary key:

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就