leetcode第 381 场周赛最后一题 差分,对称的处理

2024-01-23 08:12

本文主要是介绍leetcode第 381 场周赛最后一题 差分,对称的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第 381 场周赛 - 力扣(LeetCode)最后一题3017. 按距离统计房屋对数目 II - 力扣(LeetCode)

dijkstra超时了,看了灵神的解题方法力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台,其实是差分优化的暴力统计

灵神说的“撤销操作”,就是先不加那条xy新路,统计出所有距离对数,然后再加上那条路做修改。做修改需要推一下变短的位置。

灵神封装写的特别好,这道题不封装一下,有问题改起来很麻烦。

目录

统计原始距离对数:

找规律:

灵神暴力左右:

差分:

做修改:

第一种:

第二种:

关于小于区间右端点(x+y)/2:(等于过不了)

当 x==y 及x == y+1时没有缩短任何距离。不需要操作

参考代码:


统计原始距离对数:

这里说两种方法,第一种是自己想的找规律(其实踩坑了,没弄好差分),第二种就是灵神暴力,时间复杂度是相同的O(n)

找规律:

分别对奇数和偶数找一下:

第一行1 2 3 4 5五个数是题目里的房屋,左边第一列是距离 t,表中的则是与这个房屋距离为t的房屋数。

我们暴力完成这个表。

比如第一行,对1来说距离为1的只有2一个,所以是1;对2来说距离为1的是1和3,即两个。

会发现每一行会比前一行少2,而第一行也是“1 2 2 .. 2 2 1”可以列式算出来,所以可以距离为1到n的房屋对数数组(我们要返回的数组)给初始化。

        //      1 2 3 4 5//1:    1 2 2 2 1   //2就算最多啦//2:    1 1 2 1 1   //-2//3:    1 1 0 1 1   //-2//4:    1 0 0 0 1   //-2//5:    0 0 0 0 0   //-2 这个要减成0//      1 2 3 4 5 6//1:    1 2 2 2 2 1//2:    1 1 2 2 1 1     //-2//3:    1 1 1 1 1 1     //-2//4:    1 1 0 0 1 1     //-2//5:    1 0 0 0 0 1     //-2//6:    0 0 0 0 0 0     //-2

注意:

房屋数为n的情况下,不存在距离为n的房屋对(最大也是1和n之间差n-1),所以返回数组最后一位必定是0.

灵神暴力左右:

对于房屋 i ,距离为1的就是 i-1 和 i+1 ,距离为2的就是 i-2 和 i+2 ,......

一直到两边,可得左侧距离最大为i-1,右侧为n-i,

所以距离为 1 ~ i -1  的都要加一对,距离为 1 ~ n - i 的也都要加一对

差分:

而我们正好用的是差分数组。差分就是第一位为初始值,后面的都表示和前一位相差的值。对这种连续的情况,用差分是秒算的。

做修改:

首先看情况,其实就四种会变短,而这四种是对称的,也就是说其实就两种情况。

我们 i 为始点,j为终点,(x,y)为新增的路,我们让x<y。

第一种:

i 在 x左边    i <= x 

只有当 j 在y左右的时候才会缩短距离:

j在y左的位置的计算:就是算什么时候走新路更短

 

偶数的话会有一个点,这个点不走(大于号嘛,不取)

奇数的话本是两点之间,正好向下取整了,如下图的a,中间是正好,所以b可取

第二种:

x < i < (x+y)/2      剩下的区间就是对称的

第二种的y左这个j的计算

关于小于区间右端点(x+y)/2:(等于过不了)

这个短点也没有缩短的:

奇数情况        x -  - i - - y       很明显i到x和y一样远

偶数情况        x - i - - y          i直接到y为3,i到x再到y为2+1 == 3

所以<(x+y)/2

——————

当 x==y 及x == y+1时没有缩短任何距离。不需要操作

参考代码:

灵神那个写的好,我没封装。不过对称的处理可以看看,处理是类似的。

他用函数会还原,我是用个if 还原的,然而if条件有关于对称用的值的,所以后面可能进不去,还原失败。

class Solution {
#define ll long longvector<ll>ans;void add(int l, int r, int v){if(l>r)return;ans[l] += v;ans[r + 1] -= v;}
public:vector<long long> countOfPairs(int n, int x, int y){if (x>y)swap(x, y);ans = vector<ll>(n + 2);// ans[1] = n + n - 2;// for (int i = 2; i <= n - 1; i++)// {//     ans[i] = -2;// }//for (int k = 1; k <= n; k++){int i = k,orx = x,ory = y;add(1, i - 1, 1);add(1, n - i, 1);if (y - x < 2)continue;if (k > (orx + ory + 1) / 2){i = n + 1 - k;x = n + 1 - ory;y = n + 1 - orx;}if (i <= x){//1.j>=yadd(y - i, n - i,-1);//add(x-i+1,x-i+1+n-y, 1);没有想用“缩短的距离”int dec = y - x - 1;//比如 2 3 连完还是1,缩短了0,3-2-1add(y - i - dec, n - i - dec, 1);//2.x<j<y       i    x     j y//只管能短的,即:j-i > x-i + 1 + y-j//              2j > x+y+1//               j > (x+y+1)/2//j==(x+y+1)/2+1int j = (x + y + 1) / 2 + 1;//j到y-1add(j-i,y-i-1,-1);add(x - i + 2, x-i + 1 + y-j, 1);//3.j<=x不用管}else if (i < (x + y) / 2)// x - i - y 与 x - i - - y 都是不起作用,不需等于{                        //等于的话//y右:add(y-i,n-i,-1);int dec = y - i - (i - x + 1);add(y - i-dec, n - i-dec, 1);//y左://j-i>i-x+1+y-j//2j>2i-x+1+y//j>(2i-x+1+y)/2int j = i + (- x + 1+ y) / 2 + 1;add(j-i,y-1-i,-1);add(i - x +2, i - x + y - j + 1,1);}if (k > (orx + ory + 1) / 2){x = orx;y = ory;}}vector<ll>ret(n);ll sum_d = 0;for (int i = 0; i < n; i++){sum_d += ans[i+1];ret[i] = sum_d;}return ret;}
};

这篇关于leetcode第 381 场周赛最后一题 差分,对称的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635772

相关文章

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文