Haar小波下采样模块

2024-01-23 04:36
文章标签 模块 采样 haar 小波

本文主要是介绍Haar小波下采样模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文原址:Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation - ScienceDirect

原文代码:HWD/HWD.py at main · apple1986/HWD (github.com)

介绍 

深度卷积神经网络 (DCNN) 通常采用标准的下采样操作,例如最大池化、平均池化和跨步卷积,这可能会导致信息丢失。丢失的信息,如边界和纹理,对于语义分割可能是必不可少的。为了缓解这个问题,一般有下面四种方法:

  1. 通过跳过连接到解码器子网(如U-Net、LCU-Net、CENet、LinkNet和RefineNet )。
  2. 提取具有空间金字塔池化或扩展卷积的多尺度特征图到融合模块中(如DeepLab、PSPNet、PCPLP-Net、BiSenet和ICNet)。
  3. 向编码器提供多模态图像(如DiSegNet、MMADT、CANet和CCFFNet)。
  4. 增加先验信息。轮廓增强关注模块,旨在从CT图像中提取边界和形状线索,以细化分割区域。

这些方法的主要目的是通过基于多尺度、先验指导、多模态等各种策略提供更多的学习信息或特征,帮助下采样特征与分割标签之间建立良好的关系。

因此,是否可以设计一个保留信息的下采样模块,使DCNNs中尽可能多地保留信息进行语义分割?这就是作者的想法。 

下采样模块

最大池化与平均池化

池化过程类似于卷积过程。在这个示意图中,我们看到对一个 4x4 的特征图邻域进行操作,使用了一个 2x2 的滤波器,步长为2进行扫描。这个过程被称为最大池化(Max Pooling),其中选择邻域内的最大值并输出到下一层。

常用的 max pooling 参数是 S=2、f=2,其效果是将特征图的高度和宽度减半,而通道数保持不变。

如上图所示,描述的是对一个 4x4 的特征图邻域内的数值进行操作。使用了一个 2x2 的滤波器,步长为2进行扫描,计算邻域内数值的平均值并将其输出到下一层。这种操作被称为平均池化(Mean Pooling)。

"""
Copyright (c) 2023, Auorui.
All rights reserved.The Torch implementation of average pooling and maximum pooling has been compared with the official Torch implementation
"""
import torch
import torch.nn as nn__all__ = ["MaxPool2d", "AvgPool2d"]class MaxPool2d(nn.Module):"""池化层计算公式:output_size = [(input_size−kernel_size) // stride + 1]"""def __init__(self, kernel_size, stride):super(MaxPool2d, self).__init__()self.kernel_size = kernel_sizeself.stride = stridedef max_pool2d(self, input_tensor, kernel_size, stride):batch_size, channels, height, width = input_tensor.size()output_height = (height - kernel_size) // stride + 1output_width = (width - kernel_size) // stride + 1output_tensor = torch.zeros(batch_size, channels, output_height, output_width)for i in range(output_height):for j in range(output_width):# 获取输入张量中与池化窗口对应的部分window = input_tensor[:, :,i * stride: i * stride + kernel_size, j * stride: j * stride + kernel_size]output_tensor[:, :, i, j] = torch.max(window.reshape(batch_size, channels, -1), dim=2)[0]return output_tensordef forward(self, input_tensor):return self.max_pool2d(input_tensor, kernel_size=self.kernel_size, stride=self.stride)class AvgPool2d(nn.Module):"""池化层计算公式:output_size = [(input_size−kernel_size) // stride + 1]"""def __init__(self, kernel_size, stride):super(AvgPool2d, self).__init__()self.kernel_size = kernel_sizeself.stride = stridedef avg_pool2d(self, input_tensor, kernel_size, stride):batch_size, channels, height, width = input_tensor.size()output_height = (height - kernel_size) // stride + 1output_width = (width - kernel_size) // stride + 1output_tensor = torch.zeros(batch_size, channels, output_height, output_width)for i in range(output_height):for j in range(output_width):# 获取输入张量中与池化窗口对应的部分window = input_tensor[:, :,i * stride: i * stride + kernel_size, j * stride:j * stride + kernel_size]output_tensor[:, :, i, j] = torch.mean(window.reshape(batch_size, channels, -1), dim=2)return output_tensordef forward(self, input_tensor):return self.avg_pool2d(input_tensor, kernel_size=self.kernel_size, stride=self.stride)if __name__=="__main__":# input_data = torch.rand((1, 3, 3, 3))input_data = torch.Tensor([[[[0.3939, 0.8964, 0.3681],[0.5134, 0.3780, 0.0047],[0.0681, 0.0989, 0.5962]],[[0.7954, 0.4811, 0.3329],[0.8804, 0.3986, 0.3561],[0.2797, 0.3672, 0.6508]],[[0.6309, 0.1340, 0.0564],[0.3101, 0.9927, 0.5554],[0.0947, 0.2305, 0.8299]]]])print(input_data.shape)kernel_size = 3stride = 1MaxPool2d1 = nn.MaxPool2d(kernel_size, stride)output_data_with_torch_max = MaxPool2d1(input_data)AvgPool2d1 = nn.AvgPool2d(kernel_size, stride)output_data_with_torch_avg = AvgPool2d1(input_data)AvgPool2d2 = AvgPool2d(kernel_size, stride)output_data_with_torch_Avg = AvgPool2d2(input_data)MaxPool2d2 = MaxPool2d(kernel_size, stride)output_data_with_torch_Max = MaxPool2d2(input_data)# output_data_with_max = max_pool2d(input_data, kernel_size, stride)# output_data_with_avg = avg_pool2d(input_data, kernel_size, stride)print("\ntorch.nn pooling Output:")print(output_data_with_torch_max,"\n",output_data_with_torch_max.size())print(output_data_with_torch_avg,"\n",output_data_with_torch_avg.size())print("\npooling Output:")print(output_data_with_torch_Max,"\n",output_data_with_torch_Max.size())print(output_data_with_torch_Avg,"\n",output_data_with_torch_Avg.size())# 直接使用bool方法判断会因为浮点数的原因出现偏差print(torch.allclose(output_data_with_torch_max,output_data_with_torch_Max))print(torch.allclose(output_data_with_torch_avg,output_data_with_torch_Avg))# tensor([[[[0.8964]],       # output_data_with_max#          [[0.8804]],#          [[0.9927]]]])# tensor([[[[0.3686]],       # output_data_with_avg#           [[0.5047]],#           [[0.4261]]]])

在这里,简单地与PyTorch官方的实现进行了比对,成功的进行复现。

跨步卷积

import torch
import torch.nn as nnclass StridedConvolution(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3, stride=2, is_relu=True):super(StridedConvolution, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=1)self.relu = nn.ReLU(inplace=True)self.is_relu = is_reludef forward(self, x):x = self.conv(x)if self.is_relu:x = self.relu(x)return xif __name__ == '__main__':input_data = torch.rand((1, 3, 64, 64))strided_conv = StridedConvolution(3, 64)output_data = strided_conv(input_data)print("Input shape:", input_data.shape)print("Output shape:", output_data.shape)

对输入进行跨步卷积,并根据 is_relu 参数选择是否添加ReLU激活函数。在构建卷积神经网络时经常被用于下采样步骤,以减小特征图的尺寸。

Haar小波下采样

这一部分就直接参考的作者的代码,与池化不同的是,这里它是要指定输入输出几个通道。

"""
Haar Wavelet-based Downsampling (HWD)Original address of the paper: https://www.sciencedirect.com/science/article/abs/pii/S0031320323005174
Code reference: https://github.com/apple1986/HWD/tree/main
"""
import torch
import torch.nn as nn
from pytorch_wavelets import DWTForwardclass HWDownsampling(nn.Module):def __init__(self, in_channel, out_channel):super(HWDownsampling, self).__init__()self.wt = DWTForward(J=1, wave='haar', mode='zero')self.conv_bn_relu = nn.Sequential(nn.Conv2d(in_channel * 4, out_channel, kernel_size=1, stride=1),nn.BatchNorm2d(out_channel),nn.ReLU(inplace=True),)def forward(self, x):yL, yH = self.wt(x)y_HL = yH[0][:, :, 0, ::]y_LH = yH[0][:, :, 1, ::]y_HH = yH[0][:, :, 2, ::]x = torch.cat([yL, y_HL, y_LH, y_HH], dim=1)x = self.conv_bn_relu(x)return xif __name__ == '__main__':downsampling_layer = HWDownsampling(3, 64)input_data = torch.rand((1, 3, 64, 64))output_data = downsampling_layer(input_data)print("Input shape:", input_data.shape)print("Output shape:", output_data.shape)

Haar小波变换是一种基于小波的信号处理方法,它将信号分解成低频和细节高频两个部分。在图像处理中,Haar小波通常用于图像压缩和特征提取,代码中使用的DWTForward模块中离散小波变换,通过选择 yH 中的不同方向上的高频分量,构建了新的特征图。将原始低频分量 yL 与新构建的高频分量拼接在一起。最后通过一个包含卷积、批归一化和ReLU激活函数的序列处理最终的特征图。

实验验证

这是作者论文中做的实验,这样看起来,似乎HWD在细节上确实是比池化和跨步卷积效果要好。

这里因为我也用我自己的数据进行了实验:

最大池化效果

平均池化效果

跨步卷积效果 

HDW效果

从肉眼上来看,HDW的效果确实要比其他的效果要好一些。

下面是我做实验的代码,感兴趣的可以在自己的数据上面进行实验,我觉得用于交通和医学上应该会有比较好的效果。

import cv2
import torch
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import torch.nn as nn
from pytorch_wavelets import DWTForwardclass StridedConvolution(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3, stride=2, is_relu=True):super(StridedConvolution, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=1)self.relu = nn.ReLU(inplace=True)self.is_relu = is_reludef forward(self, x):x = self.conv(x)if self.is_relu:x = self.relu(x)return xclass HWDownsampling(nn.Module):def __init__(self, in_channel, out_channel):super(HWDownsampling, self).__init__()self.wt = DWTForward(J=1, wave='haar', mode='zero')self.conv_bn_relu = nn.Sequential(nn.Conv2d(in_channel * 4, out_channel, kernel_size=1, stride=1),nn.BatchNorm2d(out_channel),nn.ReLU(inplace=True),)def forward(self, x):yL, yH = self.wt(x)y_HL = yH[0][:, :, 0, ::]y_LH = yH[0][:, :, 1, ::]y_HH = yH[0][:, :, 2, ::]x = torch.cat([yL, y_HL, y_LH, y_HH], dim=1)x = self.conv_bn_relu(x)return xclass DeeperCNN(nn.Module):def __init__(self):super(DeeperCNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)self.batch_norm1 = nn.BatchNorm2d(16)self.relu = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)# self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2)# self.pool1 = HWDownsampling(16, 16)self.pool1 = StridedConvolution(16, 16, is_relu=True)self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)self.batch_norm2 = nn.BatchNorm2d(32)# self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)# self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)# self.pool2 = HWDownsampling(32, 32)self.pool2 = StridedConvolution(32, 32, is_relu=True)self.conv6 = nn.Conv2d(32, 1, kernel_size=3, stride=1, padding=1)def forward(self, x):x = self.pool1(self.relu(self.batch_norm1(self.conv1(x))))print(x.shape)x = self.pool2(self.relu(self.batch_norm2(self.conv2(x))))print(x.shape)x = self.conv6(x)return ximage_path = r'D:\PythonProject\Crack_classification_training_script\data\base\val\crack\2416.png'
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)transform = transforms.Compose([transforms.ToTensor()])
input_image = transform(image).unsqueeze(0)
import numpy as np
model = DeeperCNN()
output = model(input_image)
print("Output shape:", output.shape)input_image = input_image.squeeze(0).permute(1, 2, 0).numpy()
output_image = output.squeeze(0).permute(1, 2, 0).detach().numpy()
output_image = output_image / output_image.max()
output_image = np.clip(output_image, 0, 1)plt.subplot(1, 2, 1)
plt.imshow(input_image)
plt.title('Input Image')plt.subplot(1, 2, 2)
plt.imshow(output_image)
plt.title('Output Image')plt.show()

总结 

在论文当中,作者也做了大量的消融实验去证实这个下采样模块的有效性,建议大家去看看原著作,或许会有更多的收获。

这篇关于Haar小波下采样模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635241

相关文章

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Python模块导入的几种方法实现

《Python模块导入的几种方法实现》本文主要介绍了Python模块导入的几种方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录一、什么是模块?二、模块导入的基本方法1. 使用import整个模块2.使用from ... i