【操作系统】银行家算法的实现

2024-01-22 23:59

本文主要是介绍【操作系统】银行家算法的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章检索器

  • 1 创作的小心思
  • 2 追根溯源
  • 3 算法设计
    • 3.1 银行家算法
      • 3.1.1 所需维护的数据结构
      • 3.1.2 算法执行步骤
      • 3.1.3 流程图
    • 3.2 安全性算法
      • 3.2.1 所需维护的数据结构
      • 3.2.2 算法执行步骤
      • 3.2.3 流程图
  • 4 算法示例
    • 4.1 示例题目
    • 4.2 例题求解
  • 5 C++代码实现
    • 5.1 C++源代码(全)
    • 5.2 测试截图
      • 5.2.1 初始化
      • 5.2.2 进程1发出资源请求(1,0,1)
      • 5.2.3 进程2发出资源请求(1,0,1)
      • 5.2.4 检查当前状态安全性

1 创作的小心思

该作旨在完成老师布置的实验任务,也借此机会系统的将银行家算法再学一遍。也可以蹭一波大家的热度,嘻嘻🤭,欢迎来访🎉🎉🎉

2 追根溯源

银行家算法(Banker’s Algorithm) 是一个避免死锁(Deadlock) 的著名算法,是由艾兹格·迪杰斯特拉在1965年为T.H.E系统设计的一种避免死锁产生的算法。它以银行借贷系统的分配策略为基础,判断并保证系统的安全运行。(来源:百度百科)

3 算法设计

3.1 银行家算法

3.1.1 所需维护的数据结构

1、可利用资源向量 A v a i l a b l e Available Available。这是一个含有 m m m个元素的一维数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态的改变。若
A v a i l a b l e [ j ] = K Available[j] = K Available[j]=K,则表示系统中现有 R j R_j Rj 类资源 K K K 个。

2、最大需求矩阵 M a x Max Max。这是一个 n × m n×m n×m 的矩阵,它定义了系统中 n n n 个进程中的每个进程对 m m m 类资源的最大需求。若 M a x [ i ] [ j ] = K Max[i][j] = K Max[i][j]=K ,则表示进程 i i i 需要 R j R_j Rj 类资源的最大数目为 K K K

3、分配矩阵 A l l o c a t i o n Allocation Allocation。这是一个 n × m n×m n×m 的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。若 A l l o c a t i o n [ i ] [ j ] = K Allocation[i][j] = K Allocation[i][j]=K ,则表示进程 i i i 当前已分得 R j R_j Rj 类资源的数目为 K K K

4、需求矩阵 N e e d Need Need。这是一个 n × m n×m n×m 的矩阵,用以表示每一个进程尚需的各类资源数。若 N e e d [ i ] [ j ] = K Need[i][j] = K Need[i][j]=K ,则表示进程 i i i 还需要 R j R_j Rj 类资源 K K K个方能完成其任务。

3.1.2 算法执行步骤

R e q u e s t [ i ] Request[i] Request[i] 是进程 P i P_i Pi 的请求向量, 如果 R e q u e s t [ i ] [ j ] = K Request[i][j]=K Request[i][j]=K, 表示进程 P i P_i Pi 需要 K K K R j R_j Rj类型的资源。
P i P_i Pi 发出资源请求后,系统按下述步骤进行检查:
(1)、如果 R e q u e s t [ i ] [ j ] ≤ N e e d [ i ] [ j ] Request[i][j]≤Need[i][j] Request[i][j]Need[i][j],便转向步骤(2); 否则认为出错,因为它所需要的资源数已经超过它所宣布的最大值。
(2)、如果 R e q u e s t [ i ] [ j ] ≤ A v a i l a b l e [ j ] Request[i][j]≤Available[j] Request[i][j]Available[j] ,便转向步骤(3); 否则,表示尚无足够资源, P i P_i Pi 须等待。
(3)、系统试探着把资源分配给进程 P i P_i Pi ,并修改下面数据结构中的值:
A v a i l a b l e [ j ] = A v a i l a b l e [ j ] − R e q u e s t [ i ] [ j ] A l l o c a t i o n [ i ] [ j ] = A l l o c a t i o n [ i ] [ j ] + R e q u e s t [ i ] [ j ] N e e d [ i ] [ j ] = N e e d [ i ] [ j ] − R e q u e s t [ i ] [ j ] Available[j]=Available[j]-Request[i][j] \\ Allocation[i][j]=Allocation[i][j]+Request[i][j] \\ Need[i][j]=Need[i][j]-Request[i][j] Available[j]=Available[j]Request[i][j]Allocation[i][j]=Allocation[i][j]+Request[i][j]Need[i][j]=Need[i][j]Request[i][j]
(4)、系统执行安全性算法,检查此次资源分配后系统是否处于安全状态。若安全,才正式将资源分配给进程 P i P_i Pi ,以完成本次分配;否则,将本次试探分配作废,恢复原来资源分配状态,让进程 P i P_i Pi 等待。

3.1.3 流程图

在这里插入图片描述

3.2 安全性算法

3.2.1 所需维护的数据结构

1、工作向量 W o r k Work Work, 这是一个含有 m m m 个元素的一维数组,它表示系统可提供给进程继续运行所需的各类资源的数目,在执行安全算法开始时, W o r k = A v a i l a b l e Work=Available Work=Available。(其实和 A v a i l a b l e Available Available 所维护的内容一样)
2、进程状态向量 F i n i s h Finish Finish,这是一个含有 n n n 个元素的一维数组,它表示每一个进程是否运行完成,用布尔值来表示进程的状态, F i n i s h [ i ] = T r u e Finish[i]=True Finish[i]=True 表示进程 P i P_i Pi 已经运行完成,否则运行未完成。

3.2.2 算法执行步骤

(1) 从进程集合中找到一个能满足下述条件的进程:
F i n i s h [ i ] = F a l s e Finish[i]=False Finish[i]=False;
N e e d [ i ] [ j ] ≤ W o r k [ j ] Need[i][j]≤Work[j] Need[i][j]Work[j];(注意:此处需要所有 m m m 类资源都满足该条件)
若找到,执行步骤(2),否则,执行步骤(3)。
(2) 当进程 P i P_i Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源:
W o r k [ j ] = W o r k [ j ] + A l l o c a t i o n [ i ] [ j ] ; F i n i s h [ j ] = T r u e ; g o t o s t e p 1 ; Work[j]=Work[j]+Allocation[i][j]; \\ Finish[j]=True; \\ go\ to\ step\ 1; Work[j]=Work[j]+Allocation[i][j];Finish[j]=True;go to step 1;
(4) 如果所有进程的Finish[i]=True都满足,则表示处于安全状态;否则,系统处于不安全状态。

3.2.3 流程图

在这里插入图片描述

4 算法示例

4.1 示例题目

在这里插入图片描述

4.2 例题求解

在这里插入图片描述
在这里插入图片描述

5 C++代码实现

5.1 C++源代码(全)

1.0版本,后续有时间了可能会再回来加强一波。请求资源方面,目前只能一次性分配一个,不能同时得到请求,需要改进,其他的基本功能算是实现了。执行过程的状态,比交好实现,加个输出就OK,比较简单,代码中就没实现。

#include<cstdio>
#include<queue>
#include<vector>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010, M = 1010;
int n, m;
int Max[N][M], Allocation[N][M], Need[N][M];
int Available[M], Finish[N];
int Work[M], Request[M];
int Sum[M];//系统中m类资源的总量
void Init()
{cout << "请输入合法的矩阵" << endl;cout << "初始化Max矩阵" << endl;cout << "请输入一个" << n << "行" << m << "列的矩阵:" << endl;for (int i = 1;i <= n;i++)for (int j = 1;j <= m;j++)cin >> Max[i][j];cout << "初始化Allocation矩阵" << endl;cout << "请输入一个" << n << "行" << m << "列的矩阵:" << endl;for (int i = 1;i <= n;i++)for (int j = 1;j <= m;j++)cin >> Allocation[i][j];cout << "初始化Available向量" << endl;cout << "请输入一行" << m << "个元素表示当前可用资源的数量:" << endl;for (int i = 1;i <= m;i++) cin >> Available[i];/*初始化Need矩阵*/for (int i = 1;i <= n;i++){for (int j = 1;j <= m;j++){Need[i][j] = Max[i][j] - Allocation[i][j];}}/*初始化Sum矩阵*/for (int j = 1;j <= m;j++){for (int i = 1;i <= n;i++){Sum[j] += Allocation[i][j];}Sum[j] += Available[j];}cout << "初始化成功>^V^<" << endl;
}
/*判断初始化矩阵的合法性*/
bool Judge()
{for (int i = 1;i <= n;i++){for (int j = 1;j <= m;j++){if (Allocation[i][j] > Max[i][j]) return false;}}return true;
}
/*判断当前work向量是否大于Need[i]向量*/
bool Judge(int k)
{for (int j = 1;j <= m;j++){if (Need[k][j] > Work[j]) return false;}return true;
}
/*安全性检查的时候虚拟处理*/
void VirtureDeal(int k)
{for (int j = 1;j <= m;j++){Work[j] += Allocation[k][j];}Finish[k] = true;
}
/*安全性检查*/
bool SecurityCheck(queue<int>& q)
{memcpy(Work, Available, sizeof Available);memset(Finish, false, sizeof Finish);for(int k = 1;k <= n;k++) //n次迭代{bool flag = false;for (int i = 1;i <= n;i++){if (!Finish[i] && Judge(i)){flag = true;q.push(i);VirtureDeal(i);break;}}if (!flag) return false;}return true;
}
/*试探性分配资源*/
void Alloc(int k)
{for (int j = 1;j <= m;j++){Allocation[k][j] += Request[j];Need[k][j] -= Request[j];Available[j] -= Request[j];}
}
/*恢复原状*/
void Recover(int k)
{for (int j = 1;j <= m;j++){Allocation[k][j] -= Request[j];Need[k][j] += Request[j];Available[j] += Request[j];}
}
/*请求资源*/
void Query()
{int ID;cout << "请输入进程ID(1 -- " << n << "):" << endl; cin >> ID;cout << "请输入请求向量(输入" << m << "个有效整数):" << endl;for (int j = 1;j <= m;j++) cin >> Request[j];for (int j = 1;j <= m;j++){if (Request[j] > Need[ID][j]){cout << "出错,请求的资源大于需求资源" << endl;return;}else if (Request[j] > Available[j]){cout << "进程无法得到资源,继续处于等待状态!" << endl;return;}}Alloc(ID);//试探性分配queue<int> q;if (SecurityCheck(q)){cout << "分配资源成功!" << endl;cout << "其中的一个安全序列是:";bool mark = false;while (q.size()){if (mark) cout << "->";cout << q.front();q.pop();mark = true;}cout << endl;}else {cout << "无法执行分配任务!" << endl;Recover(ID);//无法执行分配,恢复原状}
}
int main()
{cout << "请输入进程个数: "; cin >> n;cout << "请输入资源的种类数: "; cin >> m;Init();system("pause");while (1){system("cls");cout << "1、请求资源" << endl;cout << "2、检查当前状态的安全性" << endl;cout << "0、退出主程序" << endl;while (1){int op; cin >> op;if (op < 0 || op > 2) {cout << "操做错误,请重新输入!!!" << endl;system("pause");}else {if (op == 0) exit(0);else if (op == 1) {Query();system("pause");}else if (op == 2){queue<int> q;if (SecurityCheck(q)){cout << "当前状态安全" << endl;cout << "其中的一个安全序列是:";bool mark = false;while (q.size()){if (mark) cout << "->";cout << q.front();q.pop();mark = true;}cout << endl;}else {cout << "当前状态不安全,极有可能进入死锁状态" << endl;}system("pause");}}break;}}return 0;
}
/*
Max
3 2 2
6 1 3
3 1 4
4 2 2
Allocation
1 0 0
4 1 1
2 1 1
0 0 2
Available
2 1 2
*/

5.2 测试截图

5.2.1 初始化

在这里插入图片描述

5.2.2 进程1发出资源请求(1,0,1)

在这里插入图片描述

5.2.3 进程2发出资源请求(1,0,1)

在这里插入图片描述

5.2.4 检查当前状态安全性

在这里插入图片描述
欢迎大家在评论区提出自己的疑问,我会在评论区进行回复。
也欢迎批评我写的不足之处,能力范围之内我会进行加强,我们一起共勉👊。

这篇关于【操作系统】银行家算法的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/634637

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo