mysql有的放矢_MySQL 优化总结 (二)

2024-01-22 22:20

本文主要是介绍mysql有的放矢_MySQL 优化总结 (二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Sql语句优化

Sql语句优化工具

·慢日志

如果发现系统慢了,又说不清楚是哪里慢,那么就该用这个工具了。只需要为mysql配置参数,mysql会自己记录下来慢的sql语句。配置很简单,参数文件里配置:

slow_query_log=d:/slow.txt

long_query_time = 2

就可以在d:/slow.txt里找到执行时间超过2秒的语句了,根据这个文件定位问题吧。

·mysqldumpslow.pl

慢日志文件可能会很大,让人去看是很难受的事。这时候我们可以通过mysql自带的工具来分析。这个工具可以格式化慢日志文件,对于只是参数不同的语句会归类类并,比如有两个语句select * from a where id=1 和select * from a where id=2,经过这个工具整理后就只剩下select * from a where id=N,这样读起来就舒服多了。而且这个工具可以实现简单的排序,让我们有的放矢。下面介绍下用法。因为这是个perl脚本,先要安装perl环境。脚本在mysql自带的脚本目录里,我的是在D:\mysql-5.1.30-win32\scripts

先mysqldumpslow –help以下,俺主要用的是

-s ORDER what to sort by (t, at, l, al, r, ar etc), ‘at’ is default

-t NUM just show the top n queries

-g PATTERN grep: only consider stmts that include this string

-s,是order的顺序,说明写的不够详细,俺用下来,包括看了代码,主要有

c,t,l,r和ac,at,al,ar,分别是按照query次数,时间,lock的时间和返回的记录数来排序,前面加了a的时倒叙

-t,是top n的意思,即为返回前面多少条的数据

-g,后边可以写一个正则匹配模式,大小写不敏感的

mysqldumpslow -s c -t 20 slow.txt

mysqldumpslow -s r -t 20 slow.txt

上述命令可以看出访问次数最多的20个sql语句和返回记录集最多的20个sql。

mysqldumpslow -t 10 -s t -g “left join” slow.txt

这个是按照时间返回前10条里面含有左连接的sql语句。

Explain

现在我们已经知道是哪个语句慢了,那么它为什么慢呢?看看mysql是怎么执行的吧,用explain可以看到mysql执行计划,下面的用法来源于手册

EXPLAIN语法(获取SELECT相关信息)

EXPLAIN [EXTENDED] SELECT select_options

EXPLAIN语句可以用作DESCRIBE的一个同义词,或获得关于MySQL如何执行SELECT语句的信息:

· EXPLAIN tbl_name是DESCRIBE tbl_name或SHOW COLUMNS FROM tbl_name的一个同义词。

· 如果在SELECT语句前放上关键词EXPLAIN,MySQL将解释它如何处理SELECT,提供有关表如何联接和联接的次序。

该节解释EXPLAIN的第2个用法。

借助于EXPLAIN,可以知道什么时候必须为表加入索引以得到一个使用索引来寻找记录的更快的SELECT。

如果由于使用不正确的索引出现了问题,应运行ANALYZE TABLE更新表的统计(例如关键字集的势),这样会影响优化器进行的选择。

还可以知道优化器是否以一个最佳次序联接表。为了强制优化器让一个SELECT语句按照表命名顺序的联接次序,语句应以STRAIGHT_JOIN而不只是SELECT开头。

EXPLAIN为用于SELECT语句中的每个表返回一行信息。表以它们在处理查询过程中将被MySQL读入的顺序被列出。MySQL用一遍扫描多次联接(single-sweep multi-join)的方式解决所有联接。这意味着MySQL从第一个表中读一行,然后找到在第二个表中的一个匹配行,然后在第3个表中等等。当所有的表处理完后,它输出选中的列并且返回表清单直到找到一个有更多的匹配行的表。从该表读入下一行并继续处理下一个表。

当使用EXTENDED关键字时,EXPLAIN产生附加信息,可以用SHOW WARNINGS浏览。该信息显示优化器限定SELECT语句中的表和列名,重写并且执行优化规则后SELECT语句是什么样子,并且还可能包括优化过程的其它注解。

const用于用常数值比较PRIMARY KEY或UNIQUE索引的所有部分时。在下面的查询中,tbl_name可以用于const表:

SELECT * from tbl_name WHERE primary_key=1;

SELECT * from tbl_name

WHERE primary_key_part1=1和 primary_key_part2=2;

⊙eq_ref

对于每个来自于前面的表的行组合,从该表中读取一行。这可能是最好的联接类型,除了const类型。它用在一个索引的所有部分被联接使用并且索引是UNIQUE或PRIMARY KEY。

eq_ref可以用于使用= 操作符比较的带索引的列。比较值可以为常量或一个使用在该表前面所读取的表的列的表达式。

在下面的例子中,MySQL可以使用eq_ref联接来处理ref_tables:

SELECT * FROM ref_table,other_table

WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table

WHERE ref_table.key_column_part1=other_table.column

AND ref_table.key_column_part2=1;

⊙ref

对于每个来自于前面的表的行组合,所有有匹配索引值的行将从这张表中读取。如果联接只使用键的最左边的前缀,或如果键不是UNIQUE或PRIMARY KEY(换句话说,如果联接不能基于关键字选择单个行的话),则使用ref。如果使用的键仅仅匹配少量行,该联接类型是不错的。

ref可以用于使用=或<=>操作符的带索引的列。

在下面的例子中,MySQL可以使用ref联接来处理ref_tables:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table

WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table

WHERE ref_table.key_column_part1=other_table.column

AND ref_table.key_column_part2=1;

⊙ref_or_null

该联接类型如同ref,但是添加了MySQL可以专门搜索包含NULL值的行。在解决子查询中经常使用该联接类型的优化。

在下面的例子中,MySQL可以使用ref_or_null联接来处理ref_tables:

SELECT * FROM ref_table

WHERE key_column=expr OR key_column IS NULL;

⊙ index_merge

该联接类型表示使用了索引合并优化方法。在这种情况下,key列包含了使用的索引的清单,key_len包含了使用的索引的最长的关键元素。

⊙ unique_subquery

该类型替换了下面形式的IN子查询的ref:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery是一个索引查找函数,可以完全替换子查询,效率更高。

⊙ index_subquery

该联接类型类似于unique_subquery。可以替换IN子查询,但只适合下列形式的子查询中的非唯一索引:

value IN (SELECT key_column FROM single_table WHERE some_expr)

⊙ range

只检索给定范围的行,使用一个索引来选择行。key列显示使用了哪个索引。key_len包含所使用索引的最长关键元素。在该类型中ref列为NULL。

当使用=、<>、>、>=、、BETWEEN或者IN操作符,用常量比较关键字列时,可以使用range:

SELECT * FROM tbl_name

WHERE key_column = 10;

SELECT * FROM tbl_name

WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name

WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name

WHERE key_part1= 10 AND key_part2 IN (10,20,30);

⊙ index

该联接类型与ALL相同,除了只有索引树被扫描。这通常比ALL快,因为索引文件通常比数据文件小。

当查询只使用作为单索引一部分的列时,MySQL可以使用该联接类型。

⊙ALL

对于每个来自于先前的表的行组合,进行完整的表扫描。如果表是第一个没标记const的表,这通常不好,并且通常在它情况下很差。通常可以增加更多的索引而不要使用ALL,使得行能基于前面的表中的常数值或列值被检索出。

· possible_keys

possible_keys列指出MySQL能使用哪个索引在该表中找到行。注意,该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。

如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查WHERE子句看是否它引用某些列或适合索引的列来提高你的查询性能。如果是这样,创造一个适当的索引并且再次用EXPLAIN检查查询。

为了看清一张表有什么索引,使用SHOW INDEX FROM tbl_name。

· key

key列显示MySQL实际决定使用的键(索引)。如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。

对于MyISAM和BDB表,运行ANALYZE TABLE可以帮助优化器选择更好的索引。对于MyISAM表,可以使用myisamchk --analyze。

· key_len

key_len列显示MySQL决定使用的键长度。如果键是NULL,则长度为NULL。注意通过key_len值我们可以确定MySQL将实际使用一个多部关键字的几个部分。

· ref

ref列显示使用哪个列或常数与key一起从表中选择行。

· rows

rows列显示MySQL认为它执行查询时必须检查的行数。

· Extra

该列包含MySQL解决查询的详细信息。下面解释了该列可以显示的不同的文本字符串:

⊙Distinct

MySQL发现第1个匹配行后,停止为当前的行组合搜索更多的行。

⊙Not exists

MySQL能够对查询进行LEFT JOIN优化,发现1个匹配LEFT JOIN标准的行后,不再为前面的的行组合在该表内检查更多的行。

下面是一个可以这样优化的查询类型的例子:

SELECT * 从t1 LEFT JOIN t2 ON t1.id=t2.id

WHERE t2.id IS NULL;

假定t2.id定义为NOT NULL。在这种情况下,MySQL使用t1.id的值扫描t1并查找t2中的行。如果MySQL在t2中发现一个匹配的行,它知道t2.id绝不会为NULL,并且不再扫描t2内有相同的id值的行。换句话说,对于t1的每个行,MySQL只需要在t2中查找一次,无论t2内实际有多少匹配的行。

⊙ range checked for each record (index map: #)

MySQL没有发现好的可以使用的索引,但发现如果来自前面的表的列值已知,可能部分索引可以使用。对前面的表的每个行组合,MySQL检查是否可以使用range或index_merge访问方法来索取行。

这并不很快,但比执行没有索引的联接要快得多。

⊙Using filesort

MySQL需要额外的一次传递,以找出如何按排序顺序检索行。通过根据联接类型浏览所有行并为所有匹配WHERE子句的行保存排序关键字和行的指针来完成排序。然后关键字被排序,并按排序顺序检索行。

⊙Using index

从只使用索引树中的信息而不需要进一步搜索读取实际的行来检索表中的列信息。当查询只使用作为单一索引一部分的列时,可以使用该策略。

⊙Using temporary

为了解决查询,MySQL需要创建一个临时表来容纳结果。典型情况如查询包含可以按不同情况列出列的GROUP BY和ORDER BY子句时。

⊙Using where

WHERE子句用于限制哪一个行匹配下一个表或发送到客户。除非你专门从表中索取或检查所有行,如果Extra值不为Using where并且表联接类型为ALL或index,查询可能会有一些错误。

如果想要使查询尽可能快,应找出Using filesort 和Using temporary的Extra值。

⊙Using sort_union(...), Using union(...), Using intersect(...)

这些函数说明如何为index_merge联接类型合并索引扫描。详细信息参见

⊙Using index for group-by

类似于访问表的Using index方式,Using index for group-by表示MySQL发现了一个索引,可以用来查询GROUP BY或DISTINCT查询的所有列,而不要额外搜索硬盘访问实际的表。并且,按最有效的方式使用索引,以便对于每个组,只读取少量索引条目。

通过相乘EXPLAIN输出的rows列的所有值,你能得到一个关于一个联接如何的提示。这应该粗略地告诉你MySQL必须检查多少行以执行查询。当你使用max_join_size变量限制查询时,也用这个乘积来确定执行哪个多表SELECT语句。

下列例子显示出一个多表JOIN如何能使用EXPLAIN提供的信息逐步被优化。

假定你有下面所示的SELECT语句,计划使用EXPLAIN来检查它:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,

tt.ProjectReference, tt.EstimatedShipDate,

tt.ActualShipDate, tt.ClientID,

tt.ServiceCodes, tt.RepetitiveID,

tt.CurrentProcess, tt.CurrentDPPerson,

tt.RecordVolume, tt.DPPrinted, et.COUNTRY,

et_1.COUNTRY, do.CUSTNAME

FROM tt, et, et AS et_1, do

WHERE tt.SubmitTime IS NULL

AND tt.ActualPC = et.EMPLOYID

AND tt.AssignedPC = et_1.EMPLOYID

AND tt.ClientID = do.CUSTNMBR;

对于这个例子,假定:

· 被比较的列声明如下:

2ce2b5e424a7c5da4eb9df0336bae7ed.png

· 表有下面的索引:

27b0bdb7c37328e15010d250e0e1f3c7.png

· tt.ActualPC值不是均匀分布的。

开始,在进行优化前,EXPLAIN语句产生下列信息:

table type possible_keys key key_len ref rows Extra

et ALL PRIMARY NULL NULL NULL 74

do ALL PRIMARY NULL NULL NULL 2135

et_1 ALL PRIMARY NULL NULL NULL 74

tt ALL AssignedPC, NULL NULL NULL 3872

ClientID,

ActualPC

range checked for each record (key map: 35)

因为type对每张表是ALL,这个输出显示MySQL正在对所有表产生一个笛卡尔乘积;即每一个行的组合!这将花相当长的时间,因为必须检查每张表的行数的乘积!对于一个实例,这是74 * 2135 * 74 * 3872 = 45,268,558,720行。如果表更大,你只能想象它将花多长时间……

这里的一个问题是MySQL能更高效地在声明具有相同类型和尺寸的列上使用索引。在本文中,VARCHAR和CHAR是相同的,除非它们声明为不同的长度。因为tt.ActualPC被声明为CHAR(10)并且et.EMPLOYID被声明为CHAR(15),长度不匹配。

为了修正在列长度上的不同,使用ALTER TABLE将ActualPC的长度从10个字符变为15个字符:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

现在tt.ActualPC和et.EMPLOYID都是VARCHAR(15),再执行EXPLAIN语句产生这个结果:

table type possible_keys key key_len ref rows Extra

tt ALL AssignedPC, NULL NULL NULL 3872 Using

ClientID, where

ActualPC

do ALL PRIMARY NULL NULL NULL 2135

range checked for each record (key map: 1)

et_1 ALL PRIMARY NULL NULL NULL 74

range checked for each record (key map: 1)

et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

这不是完美的,但是好一些了:rows值的乘积少了一个因子74。这个版本在几秒内执行完。

第2种方法能消除tt.AssignedPC = et_1.EMPLOYID和tt.ClientID = do.CUSTNMBR比较的列的长度失配问题:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),

-> MODIFY ClientID VARCHAR(15);

EXPLAIN产生的输出显示在下面:

table type possible_keys key key_len ref rows Extra

et ALL PRIMARY NULL NULL NULL 74

tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using

ClientID, where

ActualPC

分享到:

18e900b8666ce6f233d25ec02f95ee59.png

72dd548719f0ace4d5f9bca64e1d7715.png

2009-05-31 14:39

浏览 727

评论

这篇关于mysql有的放矢_MySQL 优化总结 (二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/634419

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间