力扣日记1.21-【回溯算法篇】77. 组合

2024-01-22 13:28

本文主要是介绍力扣日记1.21-【回溯算法篇】77. 组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

力扣日记:【回溯算法篇】77. 组合

日期:2023.1.21
参考:代码随想录、力扣
终于结束二叉树了!听说回溯篇也是个大头,不知道这一篇得持续多久了……

77. 组合

题目描述

难度:中等

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

提示:

  • 1 <= n <= 20
  • 1 <= k <= n

题解

class Solution {
#define SOLUTION 2
public:
#if SOLUTION == 1// 定义两个全局变量vector<vector<int>> result; // 存放结果集vector<int> path;   // 存放当前组合// 转换为树结构,树的宽度为当前集合长度(用for循环横向遍历),树的深度为递归层数(组合个数k)vector<vector<int>> combine(int n, int k) {backtracking(n, k, 1);return result;}// 回溯三部曲// 1. 返回值为void,参数为原参数n、k以及表示当前集合开始遍历的起始位置void backtracking(int n, int k, int startindex) {// 2. 终止条件if (path.size() == k) { // 当前组合(大小)已满足条件// 存放结果result.push_back(path);return;}// 3. 回溯逻辑// for 循环横向遍历当前集合for (int i = startindex; i <= n; i++) { // index:[1, n]// 处理节点path.push_back(i);// 递归backtracking(n, k, i+1);    // 下一次从i+1开始遍历// 回溯,撤销处理节点path.pop_back();}}
#elif SOLUTION == 2 // 考虑剪枝优化// 剪枝优化主要体现在 for 循环横向遍历处// 如果剩余可遍历(取值)的元素数量不足以达到组合长度,则没有必要遍历// 即当前路径长度 path.size() + x >= k, 其中x为剩余可遍历的元素个数 x = n - startindex + 1(加1因为是左闭)// 所以startindex(即for中的i) 需 <= path.size() + n + 1 - k// 定义两个全局变量vector<vector<int>> result; // 存放结果集vector<int> path;   // 存放当前组合// 转换为树结构,树的宽度为当前集合长度(用for循环横向遍历),树的深度为递归层数(组合个数k)vector<vector<int>> combine(int n, int k) {backtracking(n, k, 1);return result;}// 回溯三部曲// 1. 返回值为void,参数为原参数n、k以及表示当前集合开始遍历的起始位置void backtracking(int n, int k, int startindex) {// 2. 终止条件if (path.size() == k) { // 当前组合(大小)已满足条件// 存放结果result.push_back(path);return;}// 3. 回溯逻辑// for 循环横向遍历当前集合for (int i = startindex; i <= path.size() + n + 1 - k; i++) { // 剪枝优化// 处理节点path.push_back(i);// 递归backtracking(n, k, i+1);    // 下一次从i+1开始遍历// 回溯,撤销处理节点path.pop_back();}}
#endif
};

复杂度

时间复杂度:
空间复杂度:

思路总结

  • 回溯算法理论基础
  • 回溯算法模板框架:
    void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
    }			
    
  • 将组合问题抽象为树形结构(N叉树):
    在这里插入图片描述

    每个框即为每层递归的for循环,取值即为处理节点,最下面即为达到组合长度(终止条件)后存放结果

  • 回溯法三部曲:
    • 递归函数的返回值以及参数:
      • 为了简化参数,分别为存放整体结果集和单一组合定义两个全局变量,resultpath
      • 返回值一定为void,传递参数除了原始参数n和k,还要加一个startindex,用来记录本层递归的中,集合从哪里开始遍历
    • 终止条件:当前组合(大小)已满足条件
      • 此时将组合保存进结果集
    • 单层搜索的过程:
      • for 循环横向遍历当前集合(从startindex开始遍历):
        • 首先处理节点(即将当前值放入path)
        • 接着进行递归(起始位置要+1)
        • 再是回溯(即撤销处理节点,将值弹出)
  • 关于剪枝优化:
    • 剪枝优化主要体现在 for 循环横向遍历处:

      • 如果剩余可遍历(取值)的元素数量不足以达到组合长度,则没有必要继续遍历
      • 即当前路径长度 path.size() + x >= k, 其中x为剩余可遍历的元素个数 x = n - startindex + 1(加1因为是左闭)
      • 所以startindex(即for中的i) 需 <= path.size() + n + 1 - k
    • 在这里插入图片描述

    • 对于原来的不剪枝的情况,会在遍历到叶子节点(即for循环遍历完后)结束当前层递归,但由于未达到组合长度,所以在递归中不会添加到结果集。

这篇关于力扣日记1.21-【回溯算法篇】77. 组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/633117

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: