快速排序(三)——hoare法

2024-01-22 08:44
文章标签 快速 排序 hoare

本文主要是介绍快速排序(三)——hoare法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

fe594ea5bf754ddbb223a54d8fb1e7bc.gif

目录

​一.前言

二.快速排序

hoare排法​

三.结语


8fb442646f144d8daecdd2b61ec78ecd.png一.前言

本文给大家带来的是快速排序,快速排序是一种很强大的排序方法,相信大家在学习完后一定会有所收获。

码字不易,希望大家多多支持我呀!(三连+关注,你是我滴神!)

二.快速排序

快速排序是Hoare与1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素排序中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

上述为快速排序递归实现的主框架,发现于二叉树前序遍历规则非常像,同学们在写递归框架时可想想二叉树前序遍历规则即可快速写出来,后序只需分析如何按照基准值来对区间中数据进行划分的方式即可。 

今天我们来学习的是第一种版本:

hoare排法

下面是动态图例: 

开始解析: 

简单点讲就是我们找到一个数成为key,然后从右边出发找到比key小的数(如5)

然后左边再出发找比key大的数(如7)

然后让这两个值交换,意义是把比key小的值尽量放左边,比key大的值尽量放右边

交换完之后呢,右边再继续找小(如4)

左边也继续找大(如9)

然后两者再进行交换

再继续找小(如3)

再继续找大,但没找到反而相遇了,那就停下

然后最让key与相遇的位置交换

最后我们发现比key小的都在其左边,比key大的都在右边了。

右边找比key小的值找到后停下换左边找比key大的值然后也停下最后二者交换,直到key到达最终位置。

所以单趟的意义就是使key到达正确(排好序要放的位置)

老规矩,我们先来分析一下单趟排序代码:

那不妨想一想如果key左边5个数有序,右边4个数也有序,那么就完成排序的目的了。

而这又与我们之前学习的二叉树遍历很像,根,左子树,右子树遍历,再对左子树进行分割根,左子树,右子树遍历——前序遍历。

当我们把这个想象成二叉树分治遍历,那么就是排序全部完成的时候了。

我们可以快速来一遍单趟,设3为key,然后右边找小(2),左边找大(没找到相遇了),与key交换。 

3不用动了,再分割出左边选一个key出来。 

​ 

继续右边找小(找不到)交换。 

​ 

我们把它看成二叉树,当排好最后一组时开始往回递归,遇到key为2的一组时再往右递进,发现是空子树回归,然后继续往上到key为3的一组,对其右子树(5 4 )继续递进。

至此,左边排序已经排好了。 

​ 

 这样对右子树(6右边的排序)持续下去结束后,整个数组的排序完成。

 接下来是代码部分:

int PartSort(int* a, int left, int right)
{int key = a[left];while (left < right){//找小while (a[right] > key){right--;}//找大while (a[left] < key){left++;}Swap(&a[right], &a[left]);}Swap(key, &a[left]);return left;
}

我们定好key下标,首先当left与right相遇的时候(left==right)才会让key交换,所以我们第一层循环用的是left<right。

然后是找大和找小我们第二层循环就正常比较大小++和--就行了。

我们作好大体框架再从细节处出发(找bug):

当我们修改数组中的2个数字再次排序时。

我们会发现left与right都会在6这个位置停下,这样造成的结果就是死循环!

所以我们需要修改条件

而在我们处理好上面这个问题后又会出现新问题:数组越界 

可以发现如果是如图中数组,那么right就会不断--移出数组外造成越界问题。

所以需要添加条件(让right--时遇到left就停下,避免越界),left同理。 

int PartSort(int* a, int left, int right)
{int key = a[left];while (left < right){//找小while (left<right && a[right] >= key){right--;}//找大while (left < right && a[left] <= key){left++;}Swap(&a[right], &a[left]);}Swap(&key, &a[left]);return left;
}

还有一个问题:当key发生交换的时候只是数值发生了交换,但key还是在原来的位置,所以我们需要把它移动到交换后的位置。

这样就可以

int PartSort(int* a, int left, int right)
{int keyi = left;while (left < right){//找小while (left<right && a[right] >= a[keyi]){right--;}//找大while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[right], &a[left]);}Swap(&a[keyi], &a[left]);return left;
}

接下来就是处理分治问题: 

void QuickSort(int* a, int begin, int end)
{int keyi = PartSort(a, begin, end);//[begin,keyi-1]key[keyi+1,end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);}

然后我们需要制定一个结束的条件:

  • 只有一个数的时候(left==right)结束
  • 没有数的时候(left>right)

void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}int keyi = PartSort(a, begin, end);//[begin,keyi-1]key[keyi+1,end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);}

下面这是递归展开图: 

我们来用100万个随机数来测试一下快排的性能

可以看到快排的效率是名不虚传的~

在我们写完快排后再来回顾几个问题:

为什么相遇的位置一定比key小呢?

如果相遇的位置比key大,那交换肯定是会出问题的。

我们重新按原位置开始走,当快要相遇时,在R先走的情况下 ,能让R停下的是比key小的3。这样是让L走然后与R相遇。验证了R先走,相遇值比key小。

如果一开始是L先走,走到同样情景时,因为是L先走它会去找比key大的数,就这样找到了9,也与R相遇,但这样最后交换是错误的,相遇的位置比key大。

我们再换一种情况,把3换成10:

我们会发现如果是R先走,那么它会找小,最后越过10找到了4并与L相遇.因为L的位置一定是比key小的数字,毕竟它下标对应的数字是由R(负责找比key小的数字)找到并交换过来的。验证了R先走,相遇值比key小。

如果是L先走呢?在10停下后等R相遇然后交换,最后发现交换是错误的,因为出现了左边(10)比key(6)大的情况,相遇值比key大。

最后是一种极端情况:在几乎是升序的数组里R从右边先走直到和L相遇,相遇的位置没有比key小。交换后对其右边的一组数值再进行分治划分,

​ 

经过这几种情况分析我们可以发现,如果是L先走然后相遇值都是比key大的,并且交换都会出现错误。而在R先走然后相遇值都是比key小的,并且交换不会出现错误。

相信大家应该发现了,key在左边的时候我们就让右边先走,key在右边的时候我们让左边先走。

因为当key在左边的时候我们要确保最后的相遇值是比key小的,这样交换过来才能符合升序的规则,所以我们让R先走确保它找到的值一定是小的。同理key在右边时我们要确保交换过来的相遇值要比key大,这样才能符合升序规则,而让L先走就一定能确保它找到的是比key大的值。

最终我们需要学会根据key的位置不同,升序降序的规则不同合理作出相应的变化~

下面我们来分析快排的第二个问题:快排的效率分析

假设我们每一次选出的key都是中位数就会呈现出这种情况

我们可以看到每一层的单趟排序其实都可以看作是N次执行(在数很多的情况下),因为每一层合计起来也差不多是N这个量级。

而它的高度是logN,这样它的总的时间复杂度度就是O(N*logN)

但这只是比较理想的情况下,如果是在接近有序的情况下,它的高度就会变成N,这样时间复杂度的就会是O(N^2)

为了避免快排在有序的情况下效率受到干扰,我们设置了一个叫三数取中的方法。(不是位置取中,而是数值取中)

改变选key的策略,不再是固定选左边的值作key,但如果是中间的值作key又是先走左边还是右边呢,这样也会影响到单趟排序。其实我们可以一直选左边的值作key,就算你选到的key在中间把它换到左边就行了。

这样无论是有序还是无序最终key的交换落点都能尽量落到与下图差不多的位置,避免了有序时算法效率的损耗。

最终代码: 

int GetMidi(int* a, int left, int right)
{int mid = (left + right) / 2;// left mid rightif (a[left] < a[mid]){if (a[mid] < a[right]){return mid;}else if (a[left] > a[right])  // mid是最大值{return left;}else{return right;}}else // a[left] > a[mid]{if (a[mid] > a[right]){return mid;}else if (a[left] < a[right]) // mid是最小{return left;}else{return right;}}
}int PartSort(int* a, int left, int right)
{int midi = GetMidi(a,left,right);Swap(&a[midi], &a[left]);int keyi = left;while (left < right){//找小while (left<right && a[right] >= a[keyi]){right--;}//找大while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[right], &a[left]);}Swap(&a[keyi], &a[left]);return left;
}void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}int keyi = PartSort(a, begin, end);//[begin,keyi-1]key[keyi+1,end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);}

4b12323f94834afd9ec146a3c10df229.jpeg三.结语

本次我们介绍了hoare的快排法,相信大家都发现了有很多的坑点需要我们注意,不过放心,下一篇文章我会介绍在原基础上优化更加的其他快排法~最后感谢大家的观看,友友们能够学习到新的知识是额滴荣幸,期待我们下次相见~

这篇关于快速排序(三)——hoare法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632459

相关文章

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

hdu 1285(拓扑排序)

题意: 给各个队间的胜负关系,让排名次,名词相同按从小到大排。 解析: 拓扑排序是应用于有向无回路图(Direct Acyclic Graph,简称DAG)上的一种排序方式,对一个有向无回路图进行拓扑排序后,所有的顶点形成一个序列,对所有边(u,v),满足u 在v 的前面。该序列说明了顶点表示的事件或状态发生的整体顺序。比较经典的是在工程活动上,某些工程完成后,另一些工程才能继续,此时

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +