力扣208题:实现Tire(前缀树)

2024-01-22 08:28
文章标签 实现 力扣 前缀 tire 208

本文主要是介绍力扣208题:实现Tire(前缀树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【题目链接】

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

【解题代码】

public class Trie {public class TireNode {private int level; // 所在层级private boolean end; // 是否为词尾private HashMap<Character, TireNode> nextChs; // 后续所有词节点TireNode(int level, boolean end) {this.level = level;this.end = end;}// 插入下一几点public TireNode putNext(char ch, boolean end) {TireNode newNode = new TireNode(this.level + 1, end);if (this.nextChs == null) this.nextChs = new HashMap<>();this.nextChs.put(ch, newNode);return newNode;}}private TireNode root;public Trie() {// 初始化一个根节点root = new TireNode(-1, false);}public void insert(String word) {TireNode node = match(word);for (int i = node.level + 1; i < word.length(); i++) {node = node.putNext(word.charAt(i), i == word.length() - 1);}// 这个一定要加上,因为插入词的所有字符可能都存在树里,但是作为另外某些词的一部分。node.end = true;}public boolean search(String word) {TireNode node = match(word);// 判断匹配的节点层级是否为词尾,并且此节点为词尾节点。return node.level == word.length() - 1 && node.end == true;}public boolean startsWith(String prefix) {TireNode node = match(prefix);// 判断匹配的节点层级是否为词尾return node.level == prefix.length() - 1;}// 这是插入和查找等函数的关键基础函数,通过词查找最大匹配的节点private TireNode match(String word) {TireNode node = root;char ch;for (int i = 0; i < word.length(); i++) {ch = word.charAt(i);if (node.nextChs != null && node.nextChs.containsKey(ch)) {node = node.nextChs.get(ch);} elsebreak;}return node;}public static void main(String[] args) {Trie trie = new Trie();trie.insert("apple");boolean result = trie.search("apple");   // 返回 TrueSystem.out.println("result = " + result);result = trie.search("app");     // 返回 FalseSystem.out.println("result = " + result);result = trie.startsWith("app"); // 返回 TrueSystem.out.println("result = " + result);trie.insert("app");result = trie.search("app");     // 返回 TrueSystem.out.println("result = " + result);}

【解题步骤】

  1. 设计一个前缀节点类,这个类保存了,当前字符所在层级,是否为某个词的词尾,以及后续所有字符的节点,采用HashMap存储,key是后续字符,value就是下一个节点对象;
    public class TireNode {private int level; // 所在层级private boolean end; // 是否为词尾private HashMap<Character, TireNode> nextChs; // 后续所有词节点TireNode(int level, boolean end) {this.level = level;this.end = end;}// 插入下一几点public TireNode putNext(char ch, boolean end) {TireNode newNode = new TireNode(this.level + 1, end);if (this.nextChs == null) this.nextChs = new HashMap<>();this.nextChs.put(ch, newNode);return newNode;}}
    • 1 字符所在层级level变量的设计:因为词的匹配不光要字符相同,位置也要一样;

    1. 2 是否为某个词的词尾:这个变量也很重要,词尾不一定是叶子节点,因为一个词可能是另一个词的一部分
    • 3 后续所有字符对应的节点变量:采用HashMap存储,肯定是考虑性能因素,查询时间复杂度为O(1)
    1. 4 大家可以看到,这个节点类本身没有存有字符变量,而是放在上一个节点的指向本节点的key中,从减少了重复而不必要的存储;
  2. 设计一个通用的匹配节点查找函数,返回与某个字符串的匹配最深节点:这个匹配函数非常重要,因为无论是插入词,判断字符串 word 在前缀树,是否存在前缀为某个字符串的词,都可以复用这个函数
    // 这是插入和查找等函数的关键基础函数,通过词查找最大匹配的节点
    private TireNode match(String word) {TireNode node = root;char ch;for (int i = 0; i < word.length(); i++) {ch = word.charAt(i);if (node.nextChs != null && node.nextChs.containsKey(ch)) {node = node.nextChs.get(ch);} elsebreak;}return node
    }
  3. 实现Trie() 初始化前缀树对象:因为所有词没有统一的根字符,创建一个虚拟的空的根节点
    // 初始化一个根节点
    root = new TireNode(-1, false);

  4. 编写函数void insert(String word) 向前缀树中插入字符串 word ,首先在前缀树中查找与word最深匹配的节点,然后再将后续字符一一插入树中,最后将词尾字符所在节点的end值设置为true
    public void insert(String word) {TireNode node = match(word);for (int i = node.level + 1; i < word.length(); i++) {node = node.putNext(word.charAt(i), false);}// 这个一定要加上,因为插入词的所有字符可能都存在树里,但是作为另外某些词的一部分。node.end = true;
    }
  5. 编写函数boolean search(String word) :首先在前缀树中查找与word最深匹配的节点,最后判断匹配的节点层级是否为词尾,并且此节点为词尾节点。
    public boolean search(String word) {TireNode node = match(word);// 判断匹配的节点层级是否为词尾,并且此节点为词尾节点。return node.level == word.length() - 1 && node.end == true;
    }
  6. 编写函数boolean startsWith(String prefix)  :首先在前缀树中查找与word最深匹配的节点,判断匹配的节点层级是否输入字符串的末尾
    public boolean startsWith(String prefix) {TireNode node = match(prefix);// 判断匹配的节点层级是否为输入字符串的末尾return node.level == prefix.length() - 1;
    }

【思路总结】

  1. 所有树的算法题中,节点类的设计,是必不可少且非常重要,节点中的变量要点到关键并且尽量精简;
  2. 这种算法题目,属于复合应用题,需要借助已有的一些数据结构,比如这里就用到了HashMap;
  3. 前缀树对外提供的功能函数,要根据代码执行逻辑,找到其共性点,设计好内部通用函数,一旦内部通用函数设计好,公共的功能函数只需要在此基础上进行封装即可,达到最大的代码复用,并通过这种“正交性”分解,降解了程序的复杂性

这篇关于力扣208题:实现Tire(前缀树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632406

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机