从潮汐架构和安第斯大模型,看智能手机的未来演进

2024-01-22 07:28

本文主要是介绍从潮汐架构和安第斯大模型,看智能手机的未来演进,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

好久没聊手机了,今天聊聊手机。

最近这段时间,手机厂商纷纷发布了自家最新的旗舰系列。其中,有一些技术,蛮值得关注的。

大家都知道,手机行业是出了名的“内卷”,厂商之间的竞争非常激烈。但从本质来说,让人眼前一亮的创新,其实是越来越少的。所以,很多网友调侃,现在的手机发布会,就像相机发布会,除了聊拍照,还是聊拍照。

说实话,手机技术经过多年的发展,已经非常成熟。想要有颠覆式的创新,确实会越来越难。

但大家如果细致观察的话,会发现,手机已经进入了一个微创新时代。颠覆式创新也许不多,但厂商在性能提升和功能拓展方面,仍然是在不断向前探索的。

前几天,OPPO发布了自家的Find X7系列手机。我关注到它所提及的两个技术,非常有代表性,那就是——潮汐架构安第斯大模型

我个人觉得,潮汐架构和安第斯大模型,隐约预示了智能手机未来发展的两个重要趋势。

什么趋势呢?且听我逐一解读。

潮汐架构

首先说说潮汐架构。

智能手机发展到今天,其实本质上就是一个用户侧(端侧)算力及交互平台。它集算力与通信能力于一体,搭配了摄像头、触摸屏、传感器、音频等“插件”,让用户可以实现多种多样的互联网应用场景,包括社交、视频、游戏等。

手机的算力,不仅直接影响到OS和App的运行速度,也关系到视频、影像以及游戏等核心能力的体验,是整个手机性能的基础。手机算力又由什么决定呢?当然是手机SoC主芯片。

这些年,手机的升级演进,一直都是围绕SoC主芯片进行的。每当有新的芯片平台发布,各大手机厂商都会及时跟进,推出一批新的旗舰型号。

bbb559ab0fc8a50bffb3ec07c2bc842b.png

5G SoC芯片(MediaTek)

以前,手机厂商对于芯片,基本上就是拿来就用。就像发动机一样,直接往车里塞,能跑就行。现在,随着市场竞争的不断加剧,为了更好地发挥芯片的能力,也为了让用户有明显的体验差异化提升,手机厂商们开始投入更多资源,对芯片进行适配、调优。

OPPO作为手机一线大厂,在芯片联合研发方面很早就采取了行动,也积累了丰富的经验。这次,他们一如既往地与MediaTek进行深度合作,成立联合芯片技术实验室,针对天玑9300移动平台进行定制化设计。

而潮汐架构,就是深度联合设计的最新成果之一。

想要解释什么是潮汐架构,我们还是要从手机的核心原理说起。

手机,其实就是一台微型计算机。它的SoC主芯片里面,包括CPU和GPU等计算芯片。CPU和GPU的里面,又包括了运算单元和控制单元等。

手机和普通PC一样,也是遵照著名的冯·诺依曼架构进行工作。这种架构,属于存算分离。运算单元负责计算,存储器负责存储。计算时,需要先将数据从存储器调用到运算单元,完成计算后,再送回存储器。

966f48959d1b999912c762f9570f2ec0.png

冯·诺依曼架构

随着摩尔定律的发展,手机芯片的CPU和GPU都有了长足的进步,性能非常强劲。但是,存储器的性能,却始终没有办法跟上CPU和GPU的步伐。这是冯·诺依曼架构最主要的瓶颈。

性能越强的存储技术,价格成本就越高。于是,就出现多级存储架构。除了传统ROM/RAM之外,又有了缓存。缓存,还分为L1/L2/L3三级。说白了,缓存就是运算单元和传统存储之间的一个过渡。它的性能很强,读写速率快,但是成本高,所以容量不大。

9c4efaba1012f08727527e9315696db1.png

多级存储架构

一直以来,传统手机厂商的技术区,是在Flash存储和主存储器(DDR或UFS层级)。而一级缓存到系统缓存这几个层级,是芯片公司的技术区,存在难以逾越的技术壁垒。

OPPO提出的潮汐架构,打破了这个壁垒,往前又迈了一大步,直接参与到SoC的SLC(系统级缓存)设计之中。CPU核之间的共用数据缓存,以及CPU与异构核(例如GPU)之间的缓存,都可以被OPPO定制化设计。

b16c478c640c148c9deed757b5f9da0a.png

OPPO可以根据应用侧的需求,合理规划CPU、GPU等运算单元对SLC缓存的使用量和利用方式,从而最大程度地发挥硬件资源的性能,实现极致的软硬件协同。

举个例子,如果我们把CPU、GPU看作是“算力大脑”,那么,SLC就是给大脑输送数据的“高速公路”。

传统方案里,芯片厂商无法确定各个运算单元的数据量比例。于是,只能采用固定分配方案。当手机使用不同的应用时,就会出现“部分公路拥塞、部分公路空闲”的情况。

4959659543dd9aa59dd8ba8042d8f159.png

有了潮汐架构,OPPO可以根据应用场景的不同,灵活调整SLC缓存的配比,实现车道的合理优化,进而让CPU和GPU发挥最强性能。

比如,在运行大型手游时,图像渲染的工作会更多。这时,可以给GPU分配更多的系统缓存,从而降低对DDR和UFS的读写频率。应用运行速度能够得到明显提升,计算链路整体能效也有明显改善。

经过测算,潮汐架构SLC技术可以为Find X7带来4%的通用能效提升,以及2.38~7.79%的专享应用场景能效提升。整体的平均能效提升,约为8%。这是非常了不起的成就。

fcea0568316084f4c1773bcbc4b58587.png

Find X7发售后,我第一时间下单了一台。

经过多日的实际使用,我明显能够感受到系统在应用启动、加载和切换时,响应速度更快、更流畅。

天玑9300是全大核架构(4超大核+4大核),性能本来就很强。潮汐架构的加持,让手机的性能如虎添翼,有比其它旗舰更出色的体验。

8a0456c73531a97baccc455e98c4c0be.gif

长期以来,安卓机在启动性能一致性上都不如苹果手机。这次,Find X7彻底打破了这一魔咒。它始终可以保持极高的流畅度,即使后台有多个App运行,也能够极速启动新App,启动速度稳如直线。这就是得益于芯片强劲的性能,以及潮汐架构的深度优化加持。

潮汐架构也帮助提升了Find X7的续航。根据实测数据,基于潮汐架构以及一系列新技术,Find X7的续航比Find X6标准版提升了20%。

最近几年,手机厂商在芯片联合调校上的投入,变得越来越大。参与的深度,也越来越深。

厂商们都意识到,在芯片平台既有性能的基础上,进行深入挖潜,是实现差异化竞争的有力手段。在OPPO的引领下,相信会有更多的厂商走上“联合调校”这条路。相关的技术创新,也会越来越多地出现在我们面前。

安第斯大模型

潮汐架构是算力底层技术。接下来,我们看看算力最有潜力的应用——大模型。

刚刚过去的2023年,被公认为是大模型年。以ChatGPT为代表的AIGC大模型,火遍全球,成为最引人注目的科技热点。

手机终端作为普通用户最常用的数码设备,在拥抱大模型上也不甘落后。2023年下半年开始,陆续有手机型号开始引入大模型,并推出一些AIGC应用。

OPPO Find X7系列所采用的安第斯大模型(AndesGPT),是他们自研的最新技术成果,是行业首个端侧部署70 亿参数大模型。

这个大模型具备对话增强、个性专属、端云协同三大尖刀能力,从基础能力到应用落地,都相比竞争对手有更多的看点。

从参数规模上来看,安第斯大模型一共有3个版本:

4277ff1a7656c9a51103f94ff471de95.png

Tiny版本,拥有至多70亿参数,可以直接部署在Find X7这样的终端上,特点是轻量高效,支持离线运行,且隐私数据隔离。

Turbo版本,700亿参数,可以部署在安第斯智能云,支持快速响应,体验更加均衡,也能够适配多个场景。

Titan版本,参数最多,可以达到1800亿,同样可以部署在云端。庞大的参数规模,使其完全可以胜任深度推理工作以及高度复杂任务,效果最优。

手机本地部署模型不能支持更大的参数,因为参数越多,对内存的占用就越大。

本地模型70亿参数,搭配云端更大的模型,通过加密通信,可以实现端云协同,灵活支撑多样化的AI应用。

OPPO在人工智能领域起步较早。2018年,他们就成立了人工智能团队。2020年,他们将语音、建议、指令、识屏等能力进行整合,推出了对话式人工智能助手——小布助手。次年,就实现了上亿月活。

大模型崛起后,OPPO基于自己多年的技术沉淀和数据积累,很快跟进,并推出了安第斯大模型。2023年9月,安第斯大模型小试牛刀,在SuperCLUE能力排行榜知识与百科评比中,获得98.33的高分,仅次于GPT4,位列国内模型第一。

大模型的参数规模是基础,关键还是要看应用落地。

在Find X7发布会上,OPPO提到了智能摘要、AIGC消除、闪速抠图等应用。我试用了一下,效果确实不错,响应速度很快,处理的质量也很高,确实达到了真正的智能水平。

cbff463c88957afeef0e6dca669dc44d.gif

前面我说过,手机是一个交互工具。在数字时代,人与数字世界之间最主要的沟通渠道,就是手机。很多的应用,都是通过手机实现的。所以,AI与手机的结合,充满了无限的想象空间。

大模型在手机落地,其实会分为多个阶段。

首先,最浅的阶段,是像ChatGPT一样,通过与App之间的SDK接口,进行调用。这种能力调用比较生硬,玩法也很有限。

再深一点,是手机本地部署外部大模型。融合度虽然有提升,但毕竟是非自研大模型,简单的植入,无法和厂商自有的独立硬件体系相结合,也很难发挥处理器的推理性能。

更深一点,就是像OPPO这样,搞自研大模型。自研大模型彻底突破了底层API和功能限制,与硬件体系结合更加紧密,开发自由度也更高,研发进度也不受外部限制。

这种方式,在落地玩法上,也更具灵活性。它属于系统级的融合,在系统生态底层进行大模型能力扩展,可以实现原生AI能力。

换言之,OPPO的安第斯自研大模型,是可以对操作系统、所有原生App,以及所有硬件进行AI赋能的。在拍照、音视频录制、知识整理、交互增强等方面,大模型都可以提供辅助,成为真正的智能管家。用户的工作效率和生活品质可以大幅提升,相互之间的沟通乐趣也无限增加。

最后的话

很多人都说,未来的手机之争,就是智能算力之争。谁家的终端AI算力强、算法好,谁就掌握了主动权。

我非常认同这一点。潮汐架构和安第斯大模型所代表的趋势,分别是:

1、手机厂商在芯片联合调校上,将会投入更多资源。相比自研芯片,联合调校更有可行性,能够发挥手机厂商和芯片厂商各自的优势。

2、手机在应用侧,将会持续加大与AI的融合。手机的端侧AI能力,很可能会重塑现在所有的App应用,让手机变成真正的“智能手机”。

面向2024,希望手机技术的微创新,能从量变走向质变,带来更多的惊喜。

7d4a55fb3aa115b4c4c937534615686c.jpeg

这篇关于从潮汐架构和安第斯大模型,看智能手机的未来演进的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632255

相关文章

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言