操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值

本文主要是介绍操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蒙特·卡罗方法

蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是一类随机方法的统称。这类方法的特点是,可以在随机采样上计算得到近似结果,随着采样的增多,得到的结果是正确结果的概率逐渐加大。

在本实验中通过在正方形区域中生成随机点,记录随机点在圆形区域中的个数计算 π \pi π 值。
π = 4 × ( n u m b e r o f p o i n t s i n c i r c l e ) / ( t o t a l n u m b e r o f p o i n t s ) \pi= 4 \times (number \; of \; points \; in \; circle) / (total \; number \; of \; points) π=4×(numberofpointsincircle)/(totalnumberofpoints)
蒙特卡洛算法

整体思路

在主函数中开辟两个线程,在线程函数中分别将其绑定在两个CPU核上进行运算,通过一个循环源源不断地在正方形区域中生成随机点。

为了完成结果统计,定义了两个全局变量分别表示总点数和在圆形区域内的点数。

另外,为了避免两个线程同时对同一变量进行修改,需要对两个全局变量变量在使用的时候进行加锁。为了保证运行速度,在加锁的过程中要使临界区尽可能小。

【完整代码见文章最后】


生成随机点

在主函数中先使用srand(1)初始化随机数种子,在进程函数中通过对rand()函数的放缩和平移运算得到 -1~1 范围内的小数。

//生成随机点 [-1,1]
x = 2.0 * rand() / (double)RAND_MAX - 1;
y = 2.0 * rand() / (double)RAND_MAX - 1;

判断点在圆内

单独使用一个函数进行判断点是否在圆内,通过对传入的一组点坐标进行平方和运算得出判断结果。因为C语言中是没有 bool 类型的,所以这里“在圆内”则返回1,“不在圆内”则返回0 。

//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}

变量加锁

首先声明两个全局变量和分别与其对应的两个锁,并在主函数中将其初始化。

//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;	//对sum_dots的锁
pthread_mutex_t lock_in;	//对sum_in_circle的锁
//初始化锁
pthread_mutex_init(&lock_sum, NULL);
pthread_mutex_init(&lock_in, NULL);

在线程中有一个生成随机点的循环,每次循环开始的时候先将点总数sum_dots上锁pthread_mutex_lock(&lock_sum),判断是否还有剩余点,如果有则将点数减一后立刻解锁pthread_mutex_unlock(&lock_sum);,如果没有剩余点也立刻解锁同时 break 出循环。

之后生成随机点,并判断点是否在圆中,若在圆中则对sum_in_circle上锁,进行加一运算后立刻解锁,最大程度上减小临界区域。

while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}

结果截图

本实验中进行了 4 次小实验,分别为 100万 个测试点时的单线程和双线程结果和 1000万 个测试点时的单线程和双线程结果。

100万个点 双线程:100万个点 双线程
100万个点 单线程:

100万个点 单线程

1000万个点 双线程:

1000万个点 双线程

1000万个点 单线程:

1000万个点 单线程


结果分析

当测试点个数相同时,从结果可以看出双线程的运行时间明显长于单线程。这是因为加锁缘故,其它线程在临界区内会有所暂停,导致了整体运行时间长于单线程。

至于同样测试点的条件下,双线程的精度高于单线程,可能是实验偶然性,但是我之后又做了几组实验同样是这样的结果。我猜测可能是因为C语言中的rand()函数是伪随机,加上我在实验中用的初始化随机种子是定值,因此单线程的结果可以复现,随机数据的混乱程度不高,但是多线程在调度rand随机序列的顺序上又多了一层随机性,可能提高了rand()函数的随机性。当然这个猜测并没有理论依据,希望路过的大佬给予解答。

当都是单线程或都是双线程时,测试点越多预测精度越高,误差越小,这个也可以从上面的结果中看出来,这即为概率论中的大数定律,也是蒙特·卡罗(Monte Carlo)方法的精髓所在。


代码

双线程用蒙特·卡罗(Monte Carlo)方法求 π \pi π 值的完整代码如下,单线程方法仅在主函数中将其中一个线程注释掉即可。

#include <stdio.h>
#include <stdlib.h>
#ifndef __USE_GNU
#define __USE_GNU
#endif // !__USE_GNU
#include <unistd.h>
#include <sched.h>
#include <pthread.h>
#include <semaphore.h>double PI = 3.1415926535898;	//标准PI值//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;
pthread_mutex_t lock_in;//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}void* runner1() {	//将线程绑定到0号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(0, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}pthread_exit(NULL);	//退出线程
}void* runner2() {//将线程绑定到1号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(1, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1) {pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}}pthread_exit(NULL);	//退出线程
}int main(){int sum_dots_p = sum_dots;	//复制总点数,作最后计算用pthread_t tid1, tid2;		//线程IDpthread_attr_t attr;		//线程属性pthread_attr_init(&attr);	//设置默认线程属性//初始化随机数发生器 srand(1);//初始化锁pthread_mutex_init(&lock_sum, NULL);pthread_mutex_init(&lock_in, NULL);//执行两个线程分别进行随机生成点pthread_create(&tid1, &attr, runner1, NULL);pthread_create(&tid2, &attr, runner2, NULL);//等待两个线程pthread_join(tid1, NULL);pthread_join(tid2, NULL);//计算结果double estimate_PI = (double)(4.0 * sum_in_circle / sum_dots_p);printf("PI: %lf\n", estimate_PI);printf("Error Value: %lf\n", estimate_PI - PI);return 0;
} 

这篇关于操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631916

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu