操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值

本文主要是介绍操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蒙特·卡罗方法

蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是一类随机方法的统称。这类方法的特点是,可以在随机采样上计算得到近似结果,随着采样的增多,得到的结果是正确结果的概率逐渐加大。

在本实验中通过在正方形区域中生成随机点,记录随机点在圆形区域中的个数计算 π \pi π 值。
π = 4 × ( n u m b e r o f p o i n t s i n c i r c l e ) / ( t o t a l n u m b e r o f p o i n t s ) \pi= 4 \times (number \; of \; points \; in \; circle) / (total \; number \; of \; points) π=4×(numberofpointsincircle)/(totalnumberofpoints)
蒙特卡洛算法

整体思路

在主函数中开辟两个线程,在线程函数中分别将其绑定在两个CPU核上进行运算,通过一个循环源源不断地在正方形区域中生成随机点。

为了完成结果统计,定义了两个全局变量分别表示总点数和在圆形区域内的点数。

另外,为了避免两个线程同时对同一变量进行修改,需要对两个全局变量变量在使用的时候进行加锁。为了保证运行速度,在加锁的过程中要使临界区尽可能小。

【完整代码见文章最后】


生成随机点

在主函数中先使用srand(1)初始化随机数种子,在进程函数中通过对rand()函数的放缩和平移运算得到 -1~1 范围内的小数。

//生成随机点 [-1,1]
x = 2.0 * rand() / (double)RAND_MAX - 1;
y = 2.0 * rand() / (double)RAND_MAX - 1;

判断点在圆内

单独使用一个函数进行判断点是否在圆内,通过对传入的一组点坐标进行平方和运算得出判断结果。因为C语言中是没有 bool 类型的,所以这里“在圆内”则返回1,“不在圆内”则返回0 。

//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}

变量加锁

首先声明两个全局变量和分别与其对应的两个锁,并在主函数中将其初始化。

//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;	//对sum_dots的锁
pthread_mutex_t lock_in;	//对sum_in_circle的锁
//初始化锁
pthread_mutex_init(&lock_sum, NULL);
pthread_mutex_init(&lock_in, NULL);

在线程中有一个生成随机点的循环,每次循环开始的时候先将点总数sum_dots上锁pthread_mutex_lock(&lock_sum),判断是否还有剩余点,如果有则将点数减一后立刻解锁pthread_mutex_unlock(&lock_sum);,如果没有剩余点也立刻解锁同时 break 出循环。

之后生成随机点,并判断点是否在圆中,若在圆中则对sum_in_circle上锁,进行加一运算后立刻解锁,最大程度上减小临界区域。

while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}

结果截图

本实验中进行了 4 次小实验,分别为 100万 个测试点时的单线程和双线程结果和 1000万 个测试点时的单线程和双线程结果。

100万个点 双线程:100万个点 双线程
100万个点 单线程:

100万个点 单线程

1000万个点 双线程:

1000万个点 双线程

1000万个点 单线程:

1000万个点 单线程


结果分析

当测试点个数相同时,从结果可以看出双线程的运行时间明显长于单线程。这是因为加锁缘故,其它线程在临界区内会有所暂停,导致了整体运行时间长于单线程。

至于同样测试点的条件下,双线程的精度高于单线程,可能是实验偶然性,但是我之后又做了几组实验同样是这样的结果。我猜测可能是因为C语言中的rand()函数是伪随机,加上我在实验中用的初始化随机种子是定值,因此单线程的结果可以复现,随机数据的混乱程度不高,但是多线程在调度rand随机序列的顺序上又多了一层随机性,可能提高了rand()函数的随机性。当然这个猜测并没有理论依据,希望路过的大佬给予解答。

当都是单线程或都是双线程时,测试点越多预测精度越高,误差越小,这个也可以从上面的结果中看出来,这即为概率论中的大数定律,也是蒙特·卡罗(Monte Carlo)方法的精髓所在。


代码

双线程用蒙特·卡罗(Monte Carlo)方法求 π \pi π 值的完整代码如下,单线程方法仅在主函数中将其中一个线程注释掉即可。

#include <stdio.h>
#include <stdlib.h>
#ifndef __USE_GNU
#define __USE_GNU
#endif // !__USE_GNU
#include <unistd.h>
#include <sched.h>
#include <pthread.h>
#include <semaphore.h>double PI = 3.1415926535898;	//标准PI值//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;
pthread_mutex_t lock_in;//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}void* runner1() {	//将线程绑定到0号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(0, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}pthread_exit(NULL);	//退出线程
}void* runner2() {//将线程绑定到1号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(1, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1) {pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}}pthread_exit(NULL);	//退出线程
}int main(){int sum_dots_p = sum_dots;	//复制总点数,作最后计算用pthread_t tid1, tid2;		//线程IDpthread_attr_t attr;		//线程属性pthread_attr_init(&attr);	//设置默认线程属性//初始化随机数发生器 srand(1);//初始化锁pthread_mutex_init(&lock_sum, NULL);pthread_mutex_init(&lock_in, NULL);//执行两个线程分别进行随机生成点pthread_create(&tid1, &attr, runner1, NULL);pthread_create(&tid2, &attr, runner2, NULL);//等待两个线程pthread_join(tid1, NULL);pthread_join(tid2, NULL);//计算结果double estimate_PI = (double)(4.0 * sum_in_circle / sum_dots_p);printf("PI: %lf\n", estimate_PI);printf("Error Value: %lf\n", estimate_PI - PI);return 0;
} 

这篇关于操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631916

相关文章

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过