操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值

本文主要是介绍操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蒙特·卡罗方法

蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是一类随机方法的统称。这类方法的特点是,可以在随机采样上计算得到近似结果,随着采样的增多,得到的结果是正确结果的概率逐渐加大。

在本实验中通过在正方形区域中生成随机点,记录随机点在圆形区域中的个数计算 π \pi π 值。
π = 4 × ( n u m b e r o f p o i n t s i n c i r c l e ) / ( t o t a l n u m b e r o f p o i n t s ) \pi= 4 \times (number \; of \; points \; in \; circle) / (total \; number \; of \; points) π=4×(numberofpointsincircle)/(totalnumberofpoints)
蒙特卡洛算法

整体思路

在主函数中开辟两个线程,在线程函数中分别将其绑定在两个CPU核上进行运算,通过一个循环源源不断地在正方形区域中生成随机点。

为了完成结果统计,定义了两个全局变量分别表示总点数和在圆形区域内的点数。

另外,为了避免两个线程同时对同一变量进行修改,需要对两个全局变量变量在使用的时候进行加锁。为了保证运行速度,在加锁的过程中要使临界区尽可能小。

【完整代码见文章最后】


生成随机点

在主函数中先使用srand(1)初始化随机数种子,在进程函数中通过对rand()函数的放缩和平移运算得到 -1~1 范围内的小数。

//生成随机点 [-1,1]
x = 2.0 * rand() / (double)RAND_MAX - 1;
y = 2.0 * rand() / (double)RAND_MAX - 1;

判断点在圆内

单独使用一个函数进行判断点是否在圆内,通过对传入的一组点坐标进行平方和运算得出判断结果。因为C语言中是没有 bool 类型的,所以这里“在圆内”则返回1,“不在圆内”则返回0 。

//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}

变量加锁

首先声明两个全局变量和分别与其对应的两个锁,并在主函数中将其初始化。

//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;	//对sum_dots的锁
pthread_mutex_t lock_in;	//对sum_in_circle的锁
//初始化锁
pthread_mutex_init(&lock_sum, NULL);
pthread_mutex_init(&lock_in, NULL);

在线程中有一个生成随机点的循环,每次循环开始的时候先将点总数sum_dots上锁pthread_mutex_lock(&lock_sum),判断是否还有剩余点,如果有则将点数减一后立刻解锁pthread_mutex_unlock(&lock_sum);,如果没有剩余点也立刻解锁同时 break 出循环。

之后生成随机点,并判断点是否在圆中,若在圆中则对sum_in_circle上锁,进行加一运算后立刻解锁,最大程度上减小临界区域。

while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}

结果截图

本实验中进行了 4 次小实验,分别为 100万 个测试点时的单线程和双线程结果和 1000万 个测试点时的单线程和双线程结果。

100万个点 双线程:100万个点 双线程
100万个点 单线程:

100万个点 单线程

1000万个点 双线程:

1000万个点 双线程

1000万个点 单线程:

1000万个点 单线程


结果分析

当测试点个数相同时,从结果可以看出双线程的运行时间明显长于单线程。这是因为加锁缘故,其它线程在临界区内会有所暂停,导致了整体运行时间长于单线程。

至于同样测试点的条件下,双线程的精度高于单线程,可能是实验偶然性,但是我之后又做了几组实验同样是这样的结果。我猜测可能是因为C语言中的rand()函数是伪随机,加上我在实验中用的初始化随机种子是定值,因此单线程的结果可以复现,随机数据的混乱程度不高,但是多线程在调度rand随机序列的顺序上又多了一层随机性,可能提高了rand()函数的随机性。当然这个猜测并没有理论依据,希望路过的大佬给予解答。

当都是单线程或都是双线程时,测试点越多预测精度越高,误差越小,这个也可以从上面的结果中看出来,这即为概率论中的大数定律,也是蒙特·卡罗(Monte Carlo)方法的精髓所在。


代码

双线程用蒙特·卡罗(Monte Carlo)方法求 π \pi π 值的完整代码如下,单线程方法仅在主函数中将其中一个线程注释掉即可。

#include <stdio.h>
#include <stdlib.h>
#ifndef __USE_GNU
#define __USE_GNU
#endif // !__USE_GNU
#include <unistd.h>
#include <sched.h>
#include <pthread.h>
#include <semaphore.h>double PI = 3.1415926535898;	//标准PI值//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;
pthread_mutex_t lock_in;//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}void* runner1() {	//将线程绑定到0号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(0, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}pthread_exit(NULL);	//退出线程
}void* runner2() {//将线程绑定到1号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(1, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1) {pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}}pthread_exit(NULL);	//退出线程
}int main(){int sum_dots_p = sum_dots;	//复制总点数,作最后计算用pthread_t tid1, tid2;		//线程IDpthread_attr_t attr;		//线程属性pthread_attr_init(&attr);	//设置默认线程属性//初始化随机数发生器 srand(1);//初始化锁pthread_mutex_init(&lock_sum, NULL);pthread_mutex_init(&lock_in, NULL);//执行两个线程分别进行随机生成点pthread_create(&tid1, &attr, runner1, NULL);pthread_create(&tid2, &attr, runner2, NULL);//等待两个线程pthread_join(tid1, NULL);pthread_join(tid2, NULL);//计算结果double estimate_PI = (double)(4.0 * sum_in_circle / sum_dots_p);printf("PI: %lf\n", estimate_PI);printf("Error Value: %lf\n", estimate_PI - PI);return 0;
} 

这篇关于操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631916

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函