本文主要是介绍numpy数组做 图片拼接(concatenate、vstack、hstack),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
两种方法拼接
#img = np.vstack((img, img2)) # vstack按垂直方向,hstack按水平方向
img = np.concatenate((img, img2), axis=0) # axis=0 按垂直方向,axis=1 按水平方向
统一图片大小,保证数组维度一致避免拼接失败。 把图片全部调整成第一张图的宽高
def img_size(image_names,width, height):for i in image_names:img = cv2.imread(os.path.join(img_path, i))img_resize = cv2.resize(img, (width, height), interpolation=cv2.INTER_CUBIC)cv2.imwrite(os.path.join(img_path, i), img_resize)print(os.path.join(img_path, i))
完整案例,拼接文件夹中的所有图片
import cv2
import os
import numpy as npdef img_size(image_names,width, height):for i in image_names:img = cv2.imread(os.path.join(img_path, i))img_resize = cv2.resize(img, (width, height), interpolation=cv2.INTER_CUBIC)cv2.imwrite(os.path.join(img_path, i), img_resize)print(os.path.join(img_path, i))if __name__ == '__main__':img_path = r'F:\studytest'image_names = [name for name in os.listdir(img_path) if os.path.splitext(name)[1] == ".jpg"]img1 = cv2.imread(os.path.join(img_path, image_names[0]))width, height = img1.shape[:2][::-1]img_size(image_names,width, height)img = img1for i in range(1,len(image_names)):img_page = image_names[i]img2 = cv2.imread(os.path.join(img_path, img_page))#img = np.vstack((img, img2)) # vstack按垂直方向,hstack按水平方向img = np.concatenate((img, img2), axis=0) # axis=0 按垂直方向,axis=1 按水平方向cv2.imwrite(os.path.join(img_path,"res.jpg"), img)# cv2.imshow("img",img)# cv2.waitKey()
``
这篇关于numpy数组做 图片拼接(concatenate、vstack、hstack)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!