BloomFilter与redis联合去重的python的代码

2024-01-21 03:58

本文主要是介绍BloomFilter与redis联合去重的python的代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们在爬大型网站的时候,需要处理上千万乃至上亿的url的去重。如果采用python的自带set,或者redis的set,那就需要占用很大的内存。如果存入将url存入数据库去重,那速度又会变慢。这种量级以上的去重,一般是采用BloomFilter,但是如果机器down机了,那BloomFilter在内存的数据中的数据,就没了。我们知道redis的数据既可以存在内存中,也可以存在硬盘中。如果能将BloomFilter和redis结合起来,那就非常棒了。
有了想法,那就去搜索,网上真的有人已经实现了,并且还公布了代码,下面均益贴上代码,想了解原理的可以访问原文
http://blog.csdn.net/bone_ace/article/details/53107018

Python
# encoding=utf-8 import redis from hashlib import md5 class SimpleHash(object): def __init__(self, cap, seed): self.cap = cap self.seed = seed def hash(self, value): ret = 0 for i in range(len(value)): ret += self.seed * ret + ord(value[i]) return (self.cap - 1) &amp; ret class BloomFilter(object): def __init__(self, host='localhost', port=6379, db=0, blockNum=1, key='bloomfilter'): """ :param host: the host of Redis :param port: the port of Redis :param db: witch db in Redis :param blockNum: one blockNum for about 90,000,000; if you have more strings for filtering, increase it. :param key: the key's name in Redis """ self.server = redis.Redis(host=host, port=port, db=db) # <<表示二进制向左移动位数,比如2<<2,2的二进制表示000010,向左移2位,就是001000,就是十进制的8 self.bit_size = 1 <<31 # Redis的String类型最大容量为512M,现使用256M self.seeds = [5, 7, 11, 13, 31, 37, 61] self.key = key self.blockNum = blockNum self.hashfunc = [] for seed in self.seeds: self.hashfunc.append(SimpleHash(self.bit_size, seed)) def isContains(self, str_input): if not str_input: return False m5 = md5() m5.update(str_input) str_input = m5.hexdigest() ret = True name = self.key + str(int(str_input[0:2], 16) % self.blockNum) for f in self.hashfunc: loc = f.hash(str_input) ret = ret &amp; self.server.getbit(name, loc) return ret def insert(self, str_input): m5 = md5() m5.update(str_input) str_input = m5.hexdigest() name = self.key + str(int(str_input[0:2], 16) % self.blockNum) for f in self.hashfunc: loc = f.hash(str_input) self.server.setbit(name, loc, 1) if __name__ == '__main__': """ 第一次运行时会显示 not exists!,之后再运行会显示 exists! """ bf = BloomFilter() if bf.isContains('http://www.baidu.com'): # 判断字符串是否存在 print 'exists!' else: print 'not exists!' bf.insert('http://www.baidu.com')
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# encoding=utf-8
import redis
from hashlib import md5
class SimpleHash ( object ) :
def __init__ ( self , cap , seed ) :
self . cap = cap
self . seed = seed
def hash ( self , value ) :
ret = 0
for i in range ( len ( value ) ) :
ret += self . seed * ret + ord ( value [ i ] )
return ( self . cap - 1 ) & amp ; ret
class BloomFilter ( object ) :
def __init__ ( self , host = 'localhost' , port = 6379 , db = 0 , blockNum = 1 , key = 'bloomfilter' ) :
"""
:param host: the host of Redis
:param port: the port of Redis
:param db: witch db in Redis
:param blockNum: one blockNum for about 90,000,000; if you have more strings for filtering, increase it.
:param key: the key's name in Redis
"""
self . server = redis . Redis ( host = host , port = port , db = db )
# <<表示二进制向左移动位数,比如2<<2,2的二进制表示000010,向左移2位,就是001000,就是十进制的8
self . bit_size = 1 << 31 # Redis的String类型最大容量为512M,现使用256M
self . seeds = [ 5 , 7 , 11 , 13 , 31 , 37 , 61 ]
self . key = key
self . blockNum = blockNum
self . hashfunc = [ ]
for seed in self . seeds :
self . hashfunc . append ( SimpleHash ( self . bit_size , seed ) )
def isContains ( self , str_input ) :
if not str_input :
return False
m5 = md5 ( )
m5 . update ( str_input )
str_input = m5 . hexdigest ( )
ret = True
name = self . key + str ( int ( str_input [ 0 : 2 ] , 16 ) % self . blockNum )
for f in self . hashfunc :
loc = f . hash ( str_input )
ret = ret & amp ; self . server . getbit ( name , loc )
return ret
def insert ( self , str_input ) :
m5 = md5 ( )
m5 . update ( str_input )
str_input = m5 . hexdigest ( )
name = self . key + str ( int ( str_input [ 0 : 2 ] , 16 ) % self . blockNum )
for f in self . hashfunc :
loc = f . hash ( str_input )
self . server . setbit ( name , loc , 1 )
if __name__ == '__main__' :
""" 第一次运行时会显示 not exists!,之后再运行会显示 exists! """
bf = BloomFilter ( )
if bf . isContains ( 'http://www.baidu.com' ) : # 判断字符串是否存在
print 'exists!'
else :
print 'not exists!'
bf . insert ( 'http://www.baidu.com' )

 

 

 




  • zeropython 微信公众号 5868037 QQ号 5868037@qq.com QQ邮箱

这篇关于BloomFilter与redis联合去重的python的代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628312

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker