本文主要是介绍PANDAS之RESAMPLE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
按日期汇总信息
Pandas中的resample
函数可以完成日期的聚合工作,包括按小时维度,日期维度,月维度,季度及年的维度等等。下面我们分别说明。首先是按周的维度对前面数据表的数据进行求和。下面的代码中W表示聚合方式是按周,how表示数据的计算方式,默认是计算平均值,这里设置为sum
,进行求和计算。
将W改为M,数据变成了按月聚合的方式。计算方式依然是求和。这里需要说明的是resample
函数会显示出所有连续的时间段,例如前面按周的聚合操作会显示连续的周日期,这里的按月操作则会在结果中显示连续的月,如果某个时间段没有数据,会以NaN值显示。
将前面代码中的M改为Q,则为按季度对数据进行聚合,计算方式依然为求和。从下面的数据表中看,日期显示的都是每个季度的最后一天,如果希望以每个季度的第一天显示,可以改为QS。
将前面代码中的Q改为A,就是按年对数据进行聚合,计算方式依然为求和。
前面的方法都是对整个数据表进行聚合和求和操作,如果只需要对某一个字段的值进行聚合和求和,可以在数据表后增加列的名称。下面是将贷款金额字段按月聚合后求和,并用0填充空值。
在前面代码的基础上再增加一个数值字段,并且在后面的计算方式中增加len
用来计数。在下面的结果中分别对贷款金额和利息收入按月聚合,并进行求和和计数计算
有时我们需要只对某一时间段的数据进行聚合和计算,下面的代码中对2016年1月至5月的数据按月进行了聚合,并计算求和。用0填充空值。
或者只对某些符合条件的数据进行聚合和计算。下面的代码中对于贷款金额大于5000的按月进行聚合,并计算求和。空值以0进行填充。
除了按周,月,季度和年以外,resample
函数还可以按以下方式对日期进行聚合。
下面给出了具体的对应表和说明。
总结
以上就是利用python按特定的维度或条件对数据进行提取的全部内容,希望本文的内容对大家学习使用Python能有所帮助。
这篇关于PANDAS之RESAMPLE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!