王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记

本文主要是介绍王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是使用BP反向还原机器认为最匹配的图案

(使用MNIST手写体数据库:https://download.csdn.net/download/a1103688841/10867644)

比如:0

下面开始代码介绍:

这里的类中最后一个函数backquery()是重点。这里有个问题应为使用S函数和S反函数所以值的范围不一样,需要校准。

import numpy
import scipy.special
import matplotlib.pyplot
class neuralNetwork:def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):self.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodesself.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))self.lr = learningrate#激活函数不可以随意更改,反向传输这里求导是固定的self.activation_function = lambda x: scipy.special.expit(x)self.inverse_activation_function = lambda x: scipy.special.logit(x)passdef train(self, inputs_list, targets_list):inputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).Thidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)final_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)output_errors = targets - final_outputshidden_errors = numpy.dot(self.who.T, output_errors) self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))passdef query(self, inputs_list):inputs = numpy.array(inputs_list, ndmin=2).Thidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)final_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)return final_outputsdef backquery(self, targets_list):#这里是重点 主要是有效值的部分需要校准final_outputs = numpy.array(targets_list, ndmin=2).Tfinal_inputs = self.inverse_activation_function(final_outputs)hidden_outputs = numpy.dot(self.who.T, final_inputs)hidden_outputs -= numpy.min(hidden_outputs)hidden_outputs /= numpy.max(hidden_outputs)hidden_outputs *= 0.98hidden_outputs += 0.01hidden_inputs = self.inverse_activation_function(hidden_outputs)inputs = numpy.dot(self.wih.T, hidden_inputs)inputs -= numpy.min(inputs)inputs /= numpy.max(inputs)inputs *= 0.98inputs += 0.01return inputs

这里是开始训练,得到需要的权重。

input_nodes = 784
hidden_nodes = 200
output_nodes = 10
learning_rate = 0.1n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
training_data_file = open("mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()epochs = 5
for e in range(epochs):for record in training_data_list:all_values = record.split(',')inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01targets = numpy.zeros(output_nodes) + 0.01targets[int(all_values[0])] = 0.99n.train(inputs, targets)passpasstest_data_file = open("mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()scorecard = []
for record in test_data_list:all_values = record.split(',')correct_label = int(all_values[0])inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01outputs = n.query(inputs)label = numpy.argmax(outputs)if (label == correct_label):scorecard.append(1)else:scorecard.append(0)passpassscorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)

下面正式调用反向推理函数。

label = 1
# create the output signals for this label
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[label] = 0.99
print(targets)# get image data
image_data = n.backquery(targets)# plot image data
matplotlib.pyplot.imshow(image_data.reshape(28,28), cmap='Greys', interpolation='None')

下面是还原图片。

 

 

 

这篇关于王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628148

相关文章

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优