王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记

本文主要是介绍王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是使用BP反向还原机器认为最匹配的图案

(使用MNIST手写体数据库:https://download.csdn.net/download/a1103688841/10867644)

比如:0

下面开始代码介绍:

这里的类中最后一个函数backquery()是重点。这里有个问题应为使用S函数和S反函数所以值的范围不一样,需要校准。

import numpy
import scipy.special
import matplotlib.pyplot
class neuralNetwork:def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):self.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodesself.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))self.lr = learningrate#激活函数不可以随意更改,反向传输这里求导是固定的self.activation_function = lambda x: scipy.special.expit(x)self.inverse_activation_function = lambda x: scipy.special.logit(x)passdef train(self, inputs_list, targets_list):inputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).Thidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)final_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)output_errors = targets - final_outputshidden_errors = numpy.dot(self.who.T, output_errors) self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))passdef query(self, inputs_list):inputs = numpy.array(inputs_list, ndmin=2).Thidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)final_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)return final_outputsdef backquery(self, targets_list):#这里是重点 主要是有效值的部分需要校准final_outputs = numpy.array(targets_list, ndmin=2).Tfinal_inputs = self.inverse_activation_function(final_outputs)hidden_outputs = numpy.dot(self.who.T, final_inputs)hidden_outputs -= numpy.min(hidden_outputs)hidden_outputs /= numpy.max(hidden_outputs)hidden_outputs *= 0.98hidden_outputs += 0.01hidden_inputs = self.inverse_activation_function(hidden_outputs)inputs = numpy.dot(self.wih.T, hidden_inputs)inputs -= numpy.min(inputs)inputs /= numpy.max(inputs)inputs *= 0.98inputs += 0.01return inputs

这里是开始训练,得到需要的权重。

input_nodes = 784
hidden_nodes = 200
output_nodes = 10
learning_rate = 0.1n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
training_data_file = open("mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()epochs = 5
for e in range(epochs):for record in training_data_list:all_values = record.split(',')inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01targets = numpy.zeros(output_nodes) + 0.01targets[int(all_values[0])] = 0.99n.train(inputs, targets)passpasstest_data_file = open("mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()scorecard = []
for record in test_data_list:all_values = record.split(',')correct_label = int(all_values[0])inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01outputs = n.query(inputs)label = numpy.argmax(outputs)if (label == correct_label):scorecard.append(1)else:scorecard.append(0)passpassscorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)

下面正式调用反向推理函数。

label = 1
# create the output signals for this label
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[label] = 0.99
print(targets)# get image data
image_data = n.backquery(targets)# plot image data
matplotlib.pyplot.imshow(image_data.reshape(28,28), cmap='Greys', interpolation='None')

下面是还原图片。

 

 

 

这篇关于王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628148

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步