王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记

本文主要是介绍王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是使用BP反向还原机器认为最匹配的图案

(使用MNIST手写体数据库:https://download.csdn.net/download/a1103688841/10867644)

比如:0

下面开始代码介绍:

这里的类中最后一个函数backquery()是重点。这里有个问题应为使用S函数和S反函数所以值的范围不一样,需要校准。

import numpy
import scipy.special
import matplotlib.pyplot
class neuralNetwork:def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):self.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodesself.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))self.lr = learningrate#激活函数不可以随意更改,反向传输这里求导是固定的self.activation_function = lambda x: scipy.special.expit(x)self.inverse_activation_function = lambda x: scipy.special.logit(x)passdef train(self, inputs_list, targets_list):inputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).Thidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)final_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)output_errors = targets - final_outputshidden_errors = numpy.dot(self.who.T, output_errors) self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))passdef query(self, inputs_list):inputs = numpy.array(inputs_list, ndmin=2).Thidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)final_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)return final_outputsdef backquery(self, targets_list):#这里是重点 主要是有效值的部分需要校准final_outputs = numpy.array(targets_list, ndmin=2).Tfinal_inputs = self.inverse_activation_function(final_outputs)hidden_outputs = numpy.dot(self.who.T, final_inputs)hidden_outputs -= numpy.min(hidden_outputs)hidden_outputs /= numpy.max(hidden_outputs)hidden_outputs *= 0.98hidden_outputs += 0.01hidden_inputs = self.inverse_activation_function(hidden_outputs)inputs = numpy.dot(self.wih.T, hidden_inputs)inputs -= numpy.min(inputs)inputs /= numpy.max(inputs)inputs *= 0.98inputs += 0.01return inputs

这里是开始训练,得到需要的权重。

input_nodes = 784
hidden_nodes = 200
output_nodes = 10
learning_rate = 0.1n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
training_data_file = open("mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()epochs = 5
for e in range(epochs):for record in training_data_list:all_values = record.split(',')inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01targets = numpy.zeros(output_nodes) + 0.01targets[int(all_values[0])] = 0.99n.train(inputs, targets)passpasstest_data_file = open("mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()scorecard = []
for record in test_data_list:all_values = record.split(',')correct_label = int(all_values[0])inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01outputs = n.query(inputs)label = numpy.argmax(outputs)if (label == correct_label):scorecard.append(1)else:scorecard.append(0)passpassscorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)

下面正式调用反向推理函数。

label = 1
# create the output signals for this label
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[label] = 0.99
print(targets)# get image data
image_data = n.backquery(targets)# plot image data
matplotlib.pyplot.imshow(image_data.reshape(28,28), cmap='Greys', interpolation='None')

下面是还原图片。

 

 

 

这篇关于王权富贵:通过BP的反向传输查看神经网络最匹配的特征图--《Python神经网络编程》的学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628148

相关文章

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应