数据结构——单链表上基本操作的实现

2024-01-20 19:28

本文主要是介绍数据结构——单链表上基本操作的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.按位序插入(带头结点)

==ListInsert(&L, i, e): ==在表L中的第i个位置上插入指定元素e = 找到第i-1个结点(前驱结点),将新结点插入其后;其中头结点可以看作第0个结点,故i=1时也适用。

typedef struct LNode{ ElemType data; struct LNode *next;

}LNode, *LinkList;

//在第i个位置插入元素e带头结点

bool ListInsert(LinkList &L, int i, ElemType e){

//判断i的合法性, i是位序号(1开始) if(i<1)

LNode *p; int j=0;

p = L;

//循环找到第i-1个结点

while(p!=NULL && j<i-1){ p = p->next;

j++;

}

if (p==NULL)

return false;

//在第i-1个结点后插入新结点

LNode *s = (LNode *)malloc(sizeof(LNode)); //申请一个结点s->data = e;

s->next = p->next;

p->next = s;                   //将结点s连到p,后两步千万不能颠倒qwq

return true;

}

平均时间复杂度:O(n)

2.按位序插入(不带头结点)

==ListInsert(&L, i, e): ==在表L中的第i个位置上插入指定元素e = 找到第i-1个结点(前驱结点),将新结点插入其后; 因为不带头结点,所以不存在0结点,因此!i=1 时,需要特殊处理——插入(删除)1个元素时,需要更改头指针L;

typedef struct LNode{ ElemType data; struct LNode *next;

}LNode, *LinkList;

bool ListInsert(LinkList &L, int i, ElemType e){

if(i<1)

return false;

//插入到第1个位置时的操作有所不同! if(i==1){

LNode *s = (LNode *)malloc(size of(LNode)); s->data =e;

s->next =L;

L=s;           //头指针指向新结点return true;

}

//i>1的情况与带头结点一样!唯一区别是j的初始值为1 LNode *p;  //指针p指向当前扫描到的结点int j=1;    //当前p指向的是第几个结点

p = L;           //L指向头结点,头结点是第0个结点(不存数据)

//循环找到第i-1个结点

while(p!=NULL && j<i-1){ p = p->next;

j++;

}

if (p==NULL)

return false;

//在第i-1个结点后插入新结点

LNode *s = (LNode *)malloc(sizeof(LNode)); //申请一个结点s->data = e;

s->next = p->next;

p->next = s; return true;

}

3.指定结点的后插操作:

==InsertNextNode(LNode *p, ElemType e):== 给定一个结点p,在其之后插入元素e; 根据单链表的链接指针只能往后查找,故给定一个结点p,那么p之后的结点我们都可知,但是p结点之前的结点无法得 ;

typedef struct LNode{ ElemType data; struct LNode *next;

}LNode, *LinkList;

bool InsertNextNode(LNode *p, ElemType e){ if(p==NULL){

return false;

}

LNode *s = (LNode *)malloc(sizeof(LNode));

//某些情况下分配失败,比如内存不足if(s==NULL)

return false; s->data = e;

s->next = p->next;

p->next = s;

return true;}

//有了后插操作,那么在第i个位置上插入指定元素e的代码可以改成:

bool ListInsert(LinkList &L, int i, ElemType e){ if(i<1)

return False;

LNode *p;

int j=0;

p = L;

//循环找到第i-1个结点

while(p!=NULL && j<i-1){ p = p->next;

j++;

}

return InsertNextNode(p, e)

}

4.指定结点的前插操作

思想:设待插入结点是s,将s插入到p的前面。我们仍然可以将s插入到*p的后面。然后将p->datas-

>data交换,这样既能满足了逻辑关系,又能是的时间复杂度为O(1)

//前插操作:在p结点之前插入元素e

bool InsertPriorNode(LNode *p, ElenType e){ if(p==NULL)

return false;

LNode *s = (LNode *)malloc(sizeof(LNode)); if(s==NULL) //内存分配失败

return false;

//重点

s->next = p->next;

p->next = s; //新结点s连到p之后s->data = p->data; //p中元素复制到s p->data = e; //p中元素覆盖为e

return true

}  //时间复杂度为O(1)

5.按位序删除节点(带头结点)

==ListDelete(&L, i, &e):== 删除操作,删除表L中第i个位置的元素,并用e返回删除元素的值;头结点视为

0结点;

思路:找到第i-1个结点,将其指针指向第i+1个结点,并释放第i个结点;

typedef struct LNode{

ElemType data;

struct LNode *next;

}LNode, *LinkList;

bool ListDelete(LinkList &L, int i, ElenType &e){

if(i<1)

return false;

LNode *p;

int j=0; p = L;

//循环找到第i-1个结点

while(p!=NULL && j<i-1){ p = p->next;

j++;

}

if(p==NULL)

return false;

if(p->next == NULL) //i-1个结点之后已无其他结点

return false;

LNode *q = p->next; e = q->data;

p->next = q->next;

free(q)

return true;

}

时间复杂度分析:

最坏,平均时间复杂度:O(n)

最好时间复杂度:删除第一个结点 O(1)

6.指定结点的删除

bool DeleteNode(LNode *p){ if(p==NULL)

return false;

LNode *q = p->next;       //q指向*p的后继结点

p->data = p->next->data; //p和后继结点交换数据域p->next = q->next;   //*q结点从链中断开” free(q);

return true;

} //时间复杂度 = O(1)

心得体会

1. 链表的动态性质:链表结构可以在运行时动态地插入和删除节点,这是它与数组最大的不同之处。链表不需要预分配固定的存储空间,可以根据需要动态分配。

2. 头结点的便捷性:使用头结点可以简化插入和删除操作,因为无论在链表的任何位置进行这些操作,都有一个统一的节点来参考,即头结点。

3. 指针的重要性:链表的操作很大程度上依赖于指针,正确地移动和更新指针是确保链表结构正确性和稳定性的关键。

4. 复杂度的理解:虽然链表允许O(1)时间复杂度的元素插入和删除(在某些条件下),但按位序操作通常需要O(n)的时间复杂度,因为可能需要遍历整个链表以找到正确的位置。

5. 内存管理:在C中使用链表时,必须小心处理内存的分配和释放。每次创建新节点时,都需要使用`malloc`分配内存,并在删除节点时使用`free`释放内存,以避免内存泄漏。

6. 边界条件的处理:在链表的操作中,需要特别注意边界条件,例如插入或删除第一个元素时,可能需要特殊处理,比如更新头指针。

7. 错误处理:适当的错误处理是链表操作中不可忽视的部分。例如,当内存分配失败时,需要返回错误信息,并避免程序崩溃。

8. 算法优化:有时候,通过一些巧妙的方法可以优化链表的操作,比如前插操作可以通过交换数据来避免复杂的节点断开和连接,这样可以减少一些不必要的指针操作。

这篇关于数据结构——单链表上基本操作的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/627082

相关文章

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug