本文主要是介绍python 使用ddddocr库实现滑块验证码滑动验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一. 识别滑块缺口
- 使用ddddocr识别
该算法识别准确率为95%左右,测试三轮,每轮测试100次
def generate_distance(slice_url, bg_url):""":param bg_url: 背景图地址:param slice_url: 滑块图地址:return: distance:rtype: Integer"""slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)slice_image = requests.get(slice_url).contentbg_image = requests.get(bg_url).contentresult = slide.slide_match(target_bytes, bg_image, simple_target=True)return result['target'][0]
- 使用cv2识别
该算法识别准确率为95%左右,测试三轮,每轮测试100次
def generate_distance(slice_url, bg_url):""":param bg_url: 背景图地址:param slice_url: 滑块图地址:return: distance:rtype: Integer"""slice_image = np.asarray(bytearray(requests.get(slice_url).content), dtype=np.uint8)slice_image = cv2.imdecode(slice_image, 1)slice_image = cv2.Canny(slice_image, 255, 255)bg_image = np.asarray(bytearray(requests.get(bg_url).content), dtype=np.uint8)bg_image = cv2.imdecode(bg_image, 1)bg_image = cv2.pyrMeanShiftFiltering(bg_image, 5, 50)bg_image = cv2.Canny(bg_image, 255, 255)result = cv2.matchTemplate(bg_image, slice_image, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)return max_loc[0]
二. 构造滑块轨迹
- 构造轨迹库
图片长度为300,理论上就300种轨迹,实际上应该是200+种,还要减去滑块图的长度80
手动滑他个几百次,并把距离和轨迹记录下来,识别出距离后直接查对应轨迹 - 算法构造轨迹track
def generate_track(distance):def __ease_out_expo(step):return 1 if step == 1 else 1 - pow(2, -10 * step)tracks = [[random.randint(20, 60), random.randint(10, 40), 0]]count = 30 + int(distance / 2)_x, _y = 0, 0for item in range(count):x = round(__ease_out_expo(item / count) * distance)t = random.randint(10, 20)if x == _x:continuetracks.append([x - _x, _y, t])_x = xtracks.append([0, 0, random.randint(200, 300)])times = sum([track[2] for track in tracks])return tracks, times
三. 结语
本篇文章篇幅不长,主要也没啥好说的,验证码研究多了,识别和轨迹就那几套方法,换汤不换药
函数a(e, t)中的重头戏:c.guid()、_.encrypt()、i.encrypt()、c.arrayToHex()四个函数我们放到浩瀚篇再说吧,不然我这紫极魔瞳四大境界变成三大境界了,哈哈哈
这篇关于python 使用ddddocr库实现滑块验证码滑动验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!