Pythpn实现匀速直线运动图像复原

2024-01-20 15:44

本文主要是介绍Pythpn实现匀速直线运动图像复原,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

匀速直线运动图像复原

1.代码

1.主要是使用逆滤波和维纳滤波进行图像复原,以及两者的一个对比

import matplotlib.pyplot as plt
import numpy as np
from numpy import fft
import math
import cv2# 仿真运动模糊
def motion_process(image_size, motion_angle):PSF = np.zeros(image_size)print(image_size)center_position = (image_size[0] - 1) / 2print(center_position)slope_tan = math.tan(motion_angle * math.pi / 180)slope_cot = 1 / slope_tanif slope_tan <= 1:for i in range(15):offset = round(i * slope_tan)  # ((center_position-i)*slope_tan)PSF[int(center_position + offset), int(center_position - offset)] = 1return PSF / PSF.sum()  # 对点扩散函数进行归一化亮度else:for i in range(15):offset = round(i * slope_cot)PSF[int(center_position - offset), int(center_position + offset)] = 1return PSF / PSF.sum()# 对图片进行运动模糊
def make_blurred(input, PSF, eps):input_fft = fft.fft2(input)  # 进行二维数组的傅里叶变换PSF_fft = fft.fft2(PSF) + epsblurred = fft.ifft2(input_fft * PSF_fft)blurred = np.abs(fft.fftshift(blurred))return blurreddef inverse(input, PSF, eps):  # 逆滤波input_fft = fft.fft2(input)PSF_fft = fft.fft2(PSF) + eps  # 噪声功率,这是已知的,考虑epsilonresult = fft.ifft2(input_fft / PSF_fft)  # 计算F(u,v)的傅里叶反变换result = np.abs(fft.fftshift(result))return resultdef wiener(input, PSF, eps, K=0.01):  # 维纳滤波,K=0.01input_fft = fft.fft2(input)PSF_fft = fft.fft2(PSF) + epsPSF_fft_1 = np.conj(PSF_fft) / (np.abs(PSF_fft) ** 2 + K)result = fft.ifft2(input_fft * PSF_fft_1)result = np.abs(fft.fftshift(result))return resultimage = cv2.imread('lena2.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  # 转换为灰度图像
img_h = image.shape[0]
img_w = image.shape[1]
plt.figure(1)
plt.xlabel("Original Image")
plt.gray()
plt.imshow(image)  # 显示原图像plt.figure(2)
plt.gray()
# 进行运动模糊处理
PSF = motion_process((img_h, img_w), 60)
blurred = np.abs(make_blurred(image, PSF, 1e-3))plt.subplot(231)
plt.xlabel("Motion blurred")
plt.imshow(blurred)result = inverse(blurred, PSF, 1e-3)  # 逆滤波
plt.subplot(232)
plt.xlabel("inverse deblurred")
plt.imshow(result)result = wiener(blurred, PSF, 1e-3)  # 维纳滤波
plt.subplot(233)
plt.xlabel("wiener deblurred(k=0.01)")
plt.imshow(result)blurred_noisy = blurred + 0.1 * blurred.std() * \np.random.standard_normal(blurred.shape)  # 添加噪声,standard_normal产生随机的函数plt.subplot(234)
plt.xlabel("motion & noisy blurred")
plt.imshow(blurred_noisy)  # 显示添加噪声且运动模糊的图像result = inverse(blurred_noisy, PSF, 0.1 + 1e-3)  # 对添加噪声的图像进行逆滤波
plt.subplot(235)
plt.xlabel("inverse deblurred")
plt.imshow(result)result = wiener(blurred_noisy, PSF, 0.1 + 1e-3)  # 对添加噪声的图像进行维纳滤波
plt.subplot(236)
plt.xlabel("wiener deblurred(k=0.01)")
plt.imshow(result)plt.show()

2. 没有这个库的,需要安装这个库

在这里插入图片描述

3.执行结果

在这里插入图片描述
在这里插入图片描述

从图中可以看出:图1添加了运动模糊的图像比原图像要模糊的多,图2是在图1基础上使用逆滤波去模糊,图3是在图1基础上使用维纳滤波去模糊;图4是添加了噪声和运动模糊,图5是再图4基础上逆滤波去模糊,图6是在图4维纳滤波去模糊。
注意:建议使用第一张图片进行代码验证,第一张图片效果更为明显。图片在下面自取:

在这里插入图片描述
参考代码:https://blog.csdn.net/bingbingxie1/article/details/79398601

这篇关于Pythpn实现匀速直线运动图像复原的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626514

相关文章

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很