ACM-ICPC 2017 南宁赛区网络预赛 M Frequent Subsets Problem 【状态压缩+暴力】

本文主要是介绍ACM-ICPC 2017 南宁赛区网络预赛 M Frequent Subsets Problem 【状态压缩+暴力】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  •  1000ms
  •  131072K

The frequent subset problem is defined as follows. Suppose U={1, 2,…,N} is the universe, and S1​, S2​,…,SM​ are M sets over U. Given a positive constant α, 0<α≤1, a subset B (B≠0) is α-frequent if it is contained in at least αM sets of S1​, S2​,…,SM​, i.e. {i:B⊆Si​}∣≥αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, let U={1,2,3,4,5}, M=3, α=0.5, and S1​={1,5}, S2​={1,2,5}, S3​={1,3,4}. Then there are 3 α-frequent subsets of U, which are {1},{5} and{1,5}.

Input Format

The first line contains two numbers N and α, where N is a positive integers, and α is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., line i + 1i+1 contains Si​, 1≤i≤M . Your program should be able to handle N up to 20 and M up to 50.

Output Format

The number of α-frequent subsets.

样例输入

15 0.4
1 8 14 4 13 2
3 7 11 6
10 8 4 2
9 3 12 7 15 2
8 3 2 4 5

样例输出

11

题目来源

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

题目大意:数字N表示全集为1,2,...,N。给你M个集合,问有多少个子集满足至少有a*M个集合包含它。

题解:状态压缩,用20位二进制表示每个集合中1到N这些数是否出现,如果出现相应位置为1否则为0,比如一个集合为{1,2}则表示为00000000000000000011(只有第一位和第二位为1),然后枚举每个子集,判断即可

AC的C++代码:

#include<iostream>
#include<cmath>using namespace std;int main()
{int n,k=0,x,res=0,s[55]={0};double a;char c;scanf("%d%lf",&n,&a);while(~scanf("%d%c",&x,&c)){s[k]+=(1<<(x-1));if(c=='\n')k++;}int num=ceil(k*a);//向上取整 for(int i=1;i<(1<<n);i++){int cnt=0;for(int j=0;j<k;j++)if((i&s[j])==i)//&的优先级比==小,因此必须有括号 cnt++;if(cnt>=num)res++;}printf("%d\n",res);return 0;
}

 

这篇关于ACM-ICPC 2017 南宁赛区网络预赛 M Frequent Subsets Problem 【状态压缩+暴力】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626496

相关文章

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解