ACM-ICPC 2017 南宁赛区网络预赛 M Frequent Subsets Problem 【状态压缩+暴力】

本文主要是介绍ACM-ICPC 2017 南宁赛区网络预赛 M Frequent Subsets Problem 【状态压缩+暴力】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  •  1000ms
  •  131072K

The frequent subset problem is defined as follows. Suppose U={1, 2,…,N} is the universe, and S1​, S2​,…,SM​ are M sets over U. Given a positive constant α, 0<α≤1, a subset B (B≠0) is α-frequent if it is contained in at least αM sets of S1​, S2​,…,SM​, i.e. {i:B⊆Si​}∣≥αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, let U={1,2,3,4,5}, M=3, α=0.5, and S1​={1,5}, S2​={1,2,5}, S3​={1,3,4}. Then there are 3 α-frequent subsets of U, which are {1},{5} and{1,5}.

Input Format

The first line contains two numbers N and α, where N is a positive integers, and α is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., line i + 1i+1 contains Si​, 1≤i≤M . Your program should be able to handle N up to 20 and M up to 50.

Output Format

The number of α-frequent subsets.

样例输入

15 0.4
1 8 14 4 13 2
3 7 11 6
10 8 4 2
9 3 12 7 15 2
8 3 2 4 5

样例输出

11

题目来源

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

题目大意:数字N表示全集为1,2,...,N。给你M个集合,问有多少个子集满足至少有a*M个集合包含它。

题解:状态压缩,用20位二进制表示每个集合中1到N这些数是否出现,如果出现相应位置为1否则为0,比如一个集合为{1,2}则表示为00000000000000000011(只有第一位和第二位为1),然后枚举每个子集,判断即可

AC的C++代码:

#include<iostream>
#include<cmath>using namespace std;int main()
{int n,k=0,x,res=0,s[55]={0};double a;char c;scanf("%d%lf",&n,&a);while(~scanf("%d%c",&x,&c)){s[k]+=(1<<(x-1));if(c=='\n')k++;}int num=ceil(k*a);//向上取整 for(int i=1;i<(1<<n);i++){int cnt=0;for(int j=0;j<k;j++)if((i&s[j])==i)//&的优先级比==小,因此必须有括号 cnt++;if(cnt>=num)res++;}printf("%d\n",res);return 0;
}

 

这篇关于ACM-ICPC 2017 南宁赛区网络预赛 M Frequent Subsets Problem 【状态压缩+暴力】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626496

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr