可爱的 Python: 自然语言工具包入门

2024-01-20 05:20

本文主要是介绍可爱的 Python: 自然语言工具包入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

可爱的 Python: 自然语言工具包入门

可爱的 Python: 自然语言工具包入门

可爱的 Python: 自然语言工具包入门

在计算语言学中使用 Python

David Mertz, Ph.D. ( mertz@gnosis.cx), 开发者, Gnosis Software, Inc.
David Mertz
David Mertz 根本不知道他一直在写 散文。 您可以通过 mertz@gnosis.cx 与 David 联系;您可以通过他的 personal Web page 了解他的生活。请阅读他的 Text Processing in Python 一书。欢迎提出关于过去或将来专栏的意见和建议。

 

简介: 在本期文章中,David 向您介绍了自然语言工具包(Natural Language Toolkit),它是一个将学术语言技术应用于文本数据集的 Python 库。称为“文本处理”的程序设计是其基本功能;更深入的是专门用于研究自然语言的语法以及语义分析的能力。

发布日期: 2004 年 7 月 24 日
级别: 初级
访问情况 : 5939 次浏览
评论: 0 (查看 | 添加评论 - 登录)

平均分 (4个评分)
为本文评分

 

鄙人并非见多识广,虽然写过很多关于 文本处理 方面的东西(例如,一本书),但是,对我来说, 语言处理(linguistic processing) 是一个相对新奇的领域。如果在对意义非凡的自然语言工具包(NLTK)的 说明中出现了错误,请您谅解。NLTK 是使用 Python 教学以及实践计算语言学的极好工具。此外,计算语言学与人工 智能、语言/专门语言识别、翻译以及语法检查等领域关系密切。

NLTK 包括什么

NLTK 会被自然地看作是具有栈结构的一系列层,这些层构建于彼此基础之上。那些熟悉人工语言(比如 Python)的文法 和解析的读者来说,理解自然语言模型中类似的 —— 但更深奥的 —— 层不会有太大困难。

术语表

全集(Corpora):相关文本的集合。例如,莎士比亚的作品可能被统称为一个 文集(corpus); 而若干个作者的作品称为 全集

直方图(Histogram):数据集中不同单词、字母或其他条目的出现频率的统计分布。

结构(Syntagmatic):对语段的研究;也就是全集中字母、单词或短语连续出现的统计关系。

上下文无关语法(Context-free grammar): 由四类形式语法构成的 Noam Chomsky 层级中的第二类。参阅 参考资料 以获得 详尽描述。

尽管 NLTK 附带了很多已经预处理(通常是手工地)到不同程度的全集,但是概念上每一层 都是依赖于相邻的更低层次的处理。首先是断词;然后是为单词加上 标签;然后将成组 的单词解析为语法元素,比如名词短语或句子(取决于几种技术中的某一种,每种技术都有其优缺点); 最后对最终语句或其他语法单元进行分类。通过这些步骤,NLTK 让您可以生成关于不同元素出现情况 的统计,并画出描述处理过程本身或统计合计结果的图表。

在本文中,您将看到关于低层能力的一些相对完整的示例,而对大部分高层次能力将只是进行简单抽象的描述。 现在让我们来详细分析文本处理的首要步骤。


断词(Tokenization)

您可以使用 NLTK 完成的很多工作,尤其是低层的工作,与使用 Python 的基本数据结构来完成相比,并 没有 大的区别。不过,NLTK 提供了一组由更高的层所依赖和使用的系统化的接口,而不只是 简单地提供实用的类来处理加过标志或加过标签的文本。

具体讲, nltk.tokenizer.Token 类被广泛地用于存储文本的有注解的片断;这些 注解可以标记很多不同的特性,包括词类(parts-of-speech)、子标志(subtoken)结构、一个标志(token) 在更大文本中的偏移位置、语形词干 (morphological stems)、文法语句成分,等等。实际上,一个 Token 是一种 特别的字典 —— 并且以字典形式访问 —— 所以它可以容纳任何您希望的键。在 NLTK 中使用了一些专门的键, 不同的键由不同的子程序包所使用。

让我们来简要地分析一下如何创建一个标志并将其拆分为子标志:


清单 1. 初识 nltk.tokenizer.Token 类
>>> from nltk.tokenizer import *
>>> t = Token(TEXT='This is my first test sentence')
>>> WSTokenizer().tokenize(t, addlocs=True) # break on whitespace
>>> print t['TEXT']
This is my first test sentence
>>> print t['SUBTOKENS']
[<This>@[0:4c], <is>@[5:7c], <my>@[8:10c], <first>@[11:16c],
<test>@[17:21c], <sentence>@[22:30c]]
>>> t['foo'] = 'bar'
>>> t
<TEXT='This is my first test sentence', foo='bar',
SUBTOKENS=[<This>@[0:4c], <is>@[5:7c], <my>@[8:10c], <first>@[11:16c],
<test>@[17:21c], <sentence>@[22:30c]]>
>>> print t['SUBTOKENS'][0]
<This>@[0:4c]
>>> print type(t['SUBTOKENS'][0])
<class 'nltk.token.SafeToken'>


概率(Probability)

对于语言全集,您可能要做的一件相当简单的事情是分析其中各种 事件(events) 的 频率分布,并基于这些已知频率分布做出概率预测。NLTK 支持多种基于自然频率分布数据进行概率预测的方法。 我将不会在这里介绍那些方法(参阅 参考资料 中列出的概率教程), 只要说明您肯定会 期望的那些与您已经 知道的 那些(不止是显而易见的 缩放比例/正规化)之间有着一些模糊的关系就够了。

基本来讲,NLTK 支持两种类型的频率分布:直方图和条件频率分布(conditional frequency)。 nltk.probability.FreqDist 类用于创建直方图;例如, 可以这样创建一个单词直方图:


清单 2. 使用 nltk.probability.FreqDist 创建基本的直方图
>>> from nltk.probability import *
>>> article = Token(TEXT=open('cp-b17.txt').read())
>>> WSTokenizer().tokenize(article)
>>> freq = FreqDist()
>>> for word in article['SUBTOKENS']:
...     freq.inc(word['TEXT'])
>>> freq.B()
1194
>>> freq.count('Python')
12

概率教程讨论了关于更复杂特性的直方图的创建,比如“以元音结尾的词后面的词的长度”。 nltk.draw.plot.Plot 类可用于直方图的可视化显示。当然, 您也可以这样分析高层次语法特性或者甚至是与 NLTK 无关的数据集的频率分布。

条件频率分布可能比普通的直方图更有趣。条件频率分布是一种二维直方图 —— 它按每个初始条件或者“上下文”为您显示 一个直方图。例如,教程提出了一个对应每个首字母的单词长度分布问题。我们就以这样分析:


清单 3. 条件频率分布:对应每个首字母的单词长度
>>> cf = ConditionalFreqDist()
>>> for word in article['SUBTOKENS']:
...     cf[word['TEXT'][0]].inc(len(word['TEXT']))
...
>>> init_letters = cf.conditions()
>>> init_letters.sort()
>>> for c in init_letters[44:50]:
...     print "Init %s:" % c,
...     for length in range(1,6):
...         print "len %d/%.2f," % (length,cf[c].freq(n)),
...     print
...
Init a: len 1/0.03, len 2/0.03, len 3/0.03, len 4/0.03, len 5/0.03,
Init b: len 1/0.12, len 2/0.12, len 3/0.12, len 4/0.12, len 5/0.12,
Init c: len 1/0.06, len 2/0.06, len 3/0.06, len 4/0.06, len 5/0.06,
Init d: len 1/0.06, len 2/0.06, len 3/0.06, len 4/0.06, len 5/0.06,
Init e: len 1/0.18, len 2/0.18, len 3/0.18, len 4/0.18, len 5/0.18,
Init f: len 1/0.25, len 2/0.25, len 3/0.25, len 4/0.25, len 5/0.25,

条件频率分布在语言方面的一个极好应用是分析全集中的语段分布 —— 例如,给出一个特定的 词,接下来最可能出现哪个词。当然,语法会带来一些限制;不过,对句法选项的选择的研究 属于语义学、语用论和术语范畴。


词干提取(Stemming)

nltk.stemmer.porter.PorterStemmer 类是一个用于从英文单词中 获得符合语法的(前缀)词干的极其便利的工具。这一能力尤其让我心动,因为我以前曾经用 Python 创建了一个公用的、全文本索引的 搜索工具/库(见 Developing a full-text indexer in Python 中的描述,它已经用于相当多的其他项目中)。

尽管对大量文档进行关于一组确切词的搜索的能力是非常实用的( gnosis.indexer 所做的工作), 但是,对很多搜索用图而言,稍微有一些模糊将会有所帮助。也许,您不能特别确定您正在寻找的电子邮件是否使用了单词 “complicated”、“complications”、“complicating”或者“complicates”,但您却记得那是大概涉及的内容(可能与其他一些 词共同来完成一次有价值的搜索)。

NLTK 中包括一个用于单词词干提取的极好算法,并且让您可以按您的喜好定制词干提取算法:


清单 4. 为语形根(morphological roots)提取单词词干
>>> from nltk.stemmer.porter import PorterStemmer
>>> PorterStemmer().stem_word('complications')
'complic'

实际上,您可以怎样利用 gnosis.indexer 及其衍生工具或者完全不同的索引工具中的词干 提取功能,取决于您的使用情景。幸运的是,gnosis.indexer 有一个易于进行专门定制的 开放接口。您是否需要一个完全由词干构成的索引?或者您是否在索引中同时包括完整的单词 和词干?您是否需要将结果中的词干匹配从确切匹配中分离出来?在未来版本的 gnosis.indexer 中我将引入一些种类词干的提取能力,不过,最终用户可能仍然希望进行不同的定制。

无论如何,一般来说添加词干提取是非常简单的:首先,通过特别指定 gnosis.indexer.TextSplitter 来从一个文档中获得词干;然后, 当然执行搜索时,(可选地)在使用搜索条件进行索引查找之前提取其词干,可能是通过定制 您的 MyIndexer.find() 方法来实现。

在使用 PorterStemmer 时我发现 nltk.tokenizer.WSTokenizer 类确实如教程所警告的那样不好用。它可以胜任概念上的角色,但是对于实际的文本而言,您可以更好地识别出什么是一个 “单词”。幸运的是, gnosis.indexer.TextSplitter 是一个健壮的断词工具。例如:


清单 5. 基于拙劣的 NLTK 断词工具进行词干提取
>>> from nltk.tokenizer import *
>>> article = Token(TEXT=open('cp-b17.txt').read())
>>> WSTokenizer().tokenize(article)
>>> from nltk.probability import *
>>> from nltk.stemmer.porter import *
>>> stemmer = PorterStemmer()
>>> stems = FreqDist()
>>> for word in article['SUBTOKENS']:
...     stemmer.stem(word)
...     stems.inc(word['STEM'].lower())
...
>>> word_stems = stems.samples()
>>> word_stems.sort()
>>> word_stems[20:40]
['"generator-bas', '"implement', '"lazili', '"magic"', '"partial',
'"pluggable"', '"primitives"', '"repres', '"secur', '"semi-coroutines."',
'"state', '"understand', '"weightless', '"whatev', '#', '#-----',
'#----------', '#-------------', '#---------------', '#b17:']

查看一些词干,集合中的词干看起来并不是都可用于索引。很多根本不是实际的单词,还有其他一些是 用破折号连接起来的组合词,单词中还被加入了一些不相干的标点符号。让我们使用更好的断词工具 来进行尝试:


清单 6. 使用断词工具中灵巧的启发式方法来进行词干提取
>>> article = TS().text_splitter(open('cp-b17.txt').read())
>>> stems = FreqDist()
>>> for word in article:
...     stems.inc(stemmer.stem_word(word.lower()))
...
>>> word_stems = stems.samples()
>>> word_stems.sort()
>>> word_stems[60:80]
['bool', 'both', 'boundari', 'brain', 'bring', 'built', 'but', 'byte',
'call', 'can', 'cannot', 'capabl', 'capit', 'carri', 'case', 'cast',
'certain', 'certainli', 'chang', 'charm']

在这里,您可以看到有一些单词有多个可能的扩展,而且所有单词看起来都像是单词或者词素。 断词方法对随机文本集合来说至关重要;公平地讲,NLTK 捆绑的全集已经通过 WSTokenizer() 打包为易用且准确的断词工具。要获得健壮的实际可用的索引器,需要使用健壮的断词工具。


添加标签(tagging)、分块(chunking)和解析(parsing)

NLTK 的最大部分由复杂程度各不相同的各种解析器构成。在很大程度上,本篇介绍将不会 解释它们的细节,不过,我愿意大概介绍一下它们要达成什么目的。

不要忘记标志是特殊的字典这一背景 —— 具体说是那些可以包含一个 TAG 键以指明单词的语法角色的标志。NLTK 全集文档通常有部分专门语言已经预先添加了标签,不过,您当然可以 将您自己的标签添加到没有加标签的文档。

分块有些类似于“粗略解析”。也就是说,分块工作的进行,或者基于语法成分的已有标志,或者基于 您手工添加的或者使用正则表达式和程序逻辑半自动生成的标志。不过,确切地说,这不是真正的解析 (没有同样的生成规则)。例如:


清单 7. 分块解析/添加标签:单词和更大的单位
>>> from nltk.parser.chunk import ChunkedTaggedTokenizer
>>> chunked = "[ the/DT little/JJ cat/NN ] sat/VBD on/IN [ the/DT mat/NN ]"
>>> sentence = Token(TEXT=chunked)
>>> tokenizer = ChunkedTaggedTokenizer(chunk_node='NP')
>>> tokenizer.tokenize(sentence)
>>> sentence['SUBTOKENS'][0]
(NP: <the/DT> <little/JJ> <cat/NN>)
>>> sentence['SUBTOKENS'][0]['NODE']
'NP'
>>> sentence['SUBTOKENS'][0]['CHILDREN'][0]
<the/DT>
>>> sentence['SUBTOKENS'][0]['CHILDREN'][0]['TAG']
'DT'
>>> chunk_structure = TreeToken(NODE='S', CHILDREN=sentence['SUBTOKENS'])
(S:(NP: <the/DT> <little/JJ> <cat/NN>)<sat/VBD><on/IN>(NP: <the/DT> <mat/NN>))

所提及的分块工作可以由 nltk.tokenizer.RegexpChunkParser 类使用伪正则表达式来描述 构成语法元素的一系列标签来完成。这里是概率教程中的一个例子:


清单 8. 使用标签上的正则表达式进行分块
>>> rule1 = ChunkRule('<DT>?<JJ.*>*<NN.*>',
...               'Chunk optional det, zero or more adj, and a noun')
>>> chunkparser = RegexpChunkParser([rule1], chunk_node='NP', top_node='S')
>>> chunkparser.parse(sentence)
>>> print sent['TREE']
(S: (NP: <the/DT> <little/JJ> <cat/NN>)<sat/VBD> <on/IN>(NP: <the/DT> <mat/NN>))

真正的解析将引领我们进入很多理论领域。例如,top-down 解析器可以确保找到每一个可能的产品,但 可能会非常慢,因为要频繁地(指数级)进行回溯。Shift-reduce 效率更高,但是可能会错过一些产品。 不论在哪种情况下,语法规则的声明都类似于解析人工语言的语法声明。本专栏曾经介绍了其中的一些: SimpleParsemx.TextToolsSparkgnosis.xml.validity (参阅 参考资料)。

甚至,除了 top-down 和 shift-reduce 解析器以外,NLTK 还提供了“chart 解析器”,它可以创建部分假定, 这样一个给定的序列就可以继而完成一个规则。这种方法可以是既有效又完全的。举一个生动的(玩具级的)例子:


清单 9. 为上下文无关语法定义基本的产品
>>> from nltk.parser.chart import *
>>> grammar = CFG.parse('''
...    S -> NP VP
...    VP -> V NP | VP PP
...    V -> "saw" | "ate"
...    NP -> "John" | "Mary" | "Bob" | Det N | NP PP
...    Det -> "a" | "an" | "the" | "my"
...    N -> "dog" | "cat" | "cookie"
...    PP -> P NP
...    P -> "on" | "by" | "with"
...    ''')
>>> sentence = Token(TEXT='John saw a cat with my cookie')
>>> WSTokenizer().tokenize(sentence)
>>> parser = ChartParser(grammar, BU_STRATEGY, LEAF='TEXT')
>>> parser.parse_n(sentence)
>>> for tree in sentence['TREES']: print tree
(S:(NP: <John>)(VP:(VP: (V: <saw>) (NP: (Det: <a>) (N: <cat>)))(PP: (P: <with>) (NP: (Det: <my>) (N: <cookie>)))))
(S:(NP: <John>)(VP:(V: <saw>)(NP:(NP: (Det: <a>) (N: <cat>))(PP: (P: <with>) (NP: (Det: <my>) (N: <cookie>))))))

probabilistic context-free grammar(或者说是 PCFG)是一种上下文无关语法, 它将其每一个产品关联到一个概率。同样,用于概率解析的解析器也捆绑到了 NLTK 中。


您在等待什么?

NLTK 还有其他本篇简短介绍中不能涵盖的重要功能。例如,NLTK 有一个完整的框架,用于通过类似于“naive Bayesian” 和“maximum entropy”等模型的统计技术进行文本分类。 即使还有篇幅,现在我也还不能解释其本质。不过,我认为,即使是 NLTK 较低的层,也可以成为一个既可用于教学应用程序 也可用于实际应用程序的实用框架。


参考资料

  • 您可以参阅本文在 developerWorks 全球站点上的 英文原文.

  • Natural Language Toolkit(NLTK)由 Sourceforge 托管,它的表示式主页和相关文档、下载以及各种其他参考资料 都可以在那里找到。NLTK 的文档可以自项目主页获得。在那里您可以找到库的一些版本的 API 参考指南。 本文完成时,1.3 版是稳定的,1.4 版仍处在测试中;不过当您阅读本文时,可能已经有了更新的版本。

  • 对 NLTK 的新用户来说 —— 包括作者,虽然他撰写了本文 —— series of nine tutorials on NTLK 是非常有使用价值的。撰写本文时,它们概括地涵盖了 NLTK 各个子程序包; David 特别欣赏一个关于概率系统建模的 概率教程。 三本辅助教程为那些可能还不了解 Python 语言的语言学学生(或其他人)更概括地介绍了 Python。这些教程会 有所帮助而且写得很好,只是偶而有一些细节好像与最新的 API 版本不符。

  • 在一个较早的 可爱的 Python专栏中涵盖了 Developing a full-text indexer in Python并介绍了 gnosis.indexer 工具。

  • 可爱的 Python 的其他几期文章已经介绍了用于人工语言的解析器:
    • 使用 SimpleParse 模块进行解析
    • 使用 Spark 模块解析
    • 创建声明性迷你语言


  • 浏览 developerWorks 上 可爱的 Python专栏 的所有文章。

  • David 的 Text Processing in Python (Addison Wesley,2003)介绍了正则表达式、形式解析器、文本处理还有声明机制。这是开始接触计算语言学的很 好的起点。此外,David 欣喜地发现,在在研究本文的过程中他的书中的一个效用函数已经被加入到 NLTK 程序包中。

  • 通过 Computational Linguistics FAQ 和 按季度发行的 ACL 杂志 Computational Linguistics 来深入学习计算语言学。

  • 免费的百科全书 Wikipedia 提供了对 计算语言学 和 上下文无关语法 的概要介绍,并且给出了关于它们两者的资料的有用链接。

  • 上下文无关(及其他形式的)语法是非常复杂的。另外参阅 Eli Project 的 Context-Free Grammars and Parsing以及关于 Chomsky hierarchy 的 Wikipedia 文章。

  • 在 developerWorks Linux 专区 可以找到 更多为 Linux 开发者准备的参考资料。

  • 在 Developer Bookstore Linux 区中定购 打折出售的 Linux 书籍。

  • 自 developerWorks 的 为您的 Linux 应用开发加油提速 专区下载可以运行于 Linux 之上的经过挑选的 developerWorks Subscription 产品免费测试版本,包括 WebSphere Studio Site Developer、WebSphere SDK for Web services、WebSphere Application Server、DB2 Universal Database Personal Developers Edition、Tivoli Access Manager 和 Lotus Domino Server。要更快速地开始上手,请参阅针对各个产品的 how-to 文章和技术支持。

关于作者

David Mertz

David Mertz 根本不知道他一直在写 散文。 您可以通过 mertz@gnosis.cx 与 David 联系;您可以通过他的 personal Web page 了解他的生活。请阅读他的 Text Processing in Python 一书。欢迎提出关于过去或将来专栏的意见和建议。

posted on 2012-11-12 17:13  lexus 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/lexus/archive/2012/11/12/2766672.html

这篇关于可爱的 Python: 自然语言工具包入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/624929

相关文章

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据6.FALSH编程时间,擦写次数7.I/O高低电平电压表格8.外设接口

Python 字符串占位

在Python中,可以使用字符串的格式化方法来实现字符串的占位。常见的方法有百分号操作符 % 以及 str.format() 方法 百分号操作符 % name = "张三"age = 20message = "我叫%s,今年%d岁。" % (name, age)print(message) # 我叫张三,今年20岁。 str.format() 方法 name = "张三"age

ps基础入门

1.基础      1.1新建文件      1.2创建指定形状      1.4移动工具          1.41移动画布中的任意元素          1.42移动画布          1.43修改画布大小          1.44修改图像大小      1.5框选工具      1.6矩形工具      1.7图层          1.71图层颜色修改          1

C++入门01

1、.h和.cpp 源文件 (.cpp)源文件是C++程序的实际实现代码文件,其中包含了具体的函数和类的定义、实现以及其他相关的代码。主要特点如下:实现代码: 源文件中包含了函数、类的具体实现代码,用于实现程序的功能。编译单元: 源文件通常是一个编译单元,即单独编译的基本单位。每个源文件都会经过编译器的处理,生成对应的目标文件。包含头文件: 源文件可以通过#include指令引入头文件,以使

一道经典Python程序样例带你飞速掌握Python的字典和列表

Python中的列表(list)和字典(dict)是两种常用的数据结构,它们在数据组织和存储方面有很大的不同。 列表(List) 列表是Python中的一种有序集合,可以随时添加和删除其中的元素。列表中的元素可以是任何数据类型,包括数字、字符串、其他列表等。列表使用方括号[]表示,元素之间用逗号,分隔。 定义和使用 # 定义一个列表 fruits = ['apple', 'banana

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

python 喷泉码

因为要完成毕业设计,毕业设计做的是数据分发与传输的东西。在网络中数据容易丢失,所以我用fountain code做所发送数据包的数据恢复。fountain code属于有限域编码的一部分,有很广泛的应用。 我们日常生活中使用的二维码,就用到foutain code做数据恢复。你遮住二维码的四分之一,用手机的相机也照样能识别。你遮住的四分之一就相当于丢失的数据包。 为了实现并理解foutain

python 点滴学

1 python 里面tuple是无法改变的 tuple = (1,),计算tuple里面只有一个元素,也要加上逗号 2  1 毕业论文改 2 leetcode第一题做出来