【论文阅读】ControlNet、文章作者 github 上的 discussions

2024-01-20 00:36

本文主要是介绍【论文阅读】ControlNet、文章作者 github 上的 discussions,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Introduction
  • Method
    • ControlNet
    • ControlNet for Text-to-Image Diffusion
    • Training
    • Inference
  • Experiments
    • 消融实验
    • 定量分析
  • 在作者 github 上的一些讨论
    • 消融实验更进一步的探索
    • Precomputed ControlNet 加快模型推理
    • 迁移控制能力到其他 SD1.X 模型上
    • 其他

Introduction

  1. 提出ControlNet,通过引入该结构微调预训练文生图扩散模型,可以给模型增加空间定位条件.
  2. Stable Diffusion上使用ControlNet微调,使模型能接受 Canny edges, Hough lines, user scribbles, human key points, segmentation maps, shape normals, depths, cartoon line drawings 图像作为输入条件.
  3. 消融实验、定量分析、对比 baseline.



Method

ControlNet

考虑一个预训练好的神经网络 F ( ⋅ ; Θ ) \mathcal{F}(·;\Theta) F(⋅;Θ)表示训练好的神经网络块,它的内部结构可以包括 resnet, conv-bn-relu, muti-head att, transfomer 等. 输入 x ∈ R h × w × c x\in\mathbb{R}^{h\times w\times c} xRh×w×c,将其转换到 y y y,也即

y = F ( x ; Θ ) \large y=\mathcal{F}(x;\Theta) y=F(x;Θ)

使用ControlNet微调神经网络 F ( ⋅ ; Θ ) \mathcal{F}(·;\Theta) F(⋅;Θ),首先复制 F ( ⋅ ; Θ ) \mathcal{F}(·;\Theta) F(⋅;Θ)的结构和参数,参数命名为 Θ c \Theta_{c} Θc,同时冻结 Θ \Theta Θ. 然后在复制结构的前和后分别引入zero convolution,也即核大小为 1 × 1 1\times1 1×1、初始参数为 0 0 0的卷积层,分别用 Z ( ⋅ ; Θ z 1 ) \mathcal{Z}(·;\Theta_{z1}) Z(⋅;Θz1) Z ( ⋅ ; Θ z 2 ) \mathcal{Z}(·;\Theta_{z2}) Z(⋅;Θz2)表示. 最后,将 c c c作为微调时的条件,将其整合到模型的前向计算中,具体表示为

y c = F ( x ; Θ ) + Z ( F ( x + Z ( c ; Θ z 1 ) ; Θ c ) ; Θ z 2 ) \large y_c=\mathcal{F}(x;\Theta)+\mathcal{Z}(\mathcal{F}(x+\mathcal{Z}(c;\Theta_{z1});\Theta_c);\Theta_{z2}) yc=F(x;Θ)+Z(F(x+Z(c;Θz1);Θc);Θz2)

模型结构如下所示:
暂时无法在飞书文档外展示此内容

在训练的第一步中,zero convolution的参数都为 0 0 0,因此模型输出和未加入ControlNet的输出一样,这样做有助于在刚开始训练时保护微调结构的 backbone,使其免受随机噪声的污染.


ControlNet for Text-to-Image Diffusion

众所周知,Stable Diffusion训练时的网络有这么几个部分构成:

  • FrozenCLIPEmbedder是一个预训练的 text encoder,将 prompt 嵌入成条件向量,一般情况下参数冻结.
  • AutoencoderKL是一个预训练的 image encoder,将图像从像素空间转换到隐空间,降低扩散过程中图像向量的尺寸,一般情况下参数冻结.
  • UNet,主要需要训练的部分,模拟隐空间上图像在数据分布和高斯分布之间转换的过程. 结构上主要包含:
    • 若干 encoder 块,主要由 resnet, transformer, avg_pool 组成,用于逐层提取特征.
      • resnet 块融合图像隐向量和扩散时间步的嵌入向量
      • transformer 块融合图像隐向量和 prompt 条件向量
    • 一个 middle 块,由 resnet 和 transformer 组成
    • 若干 decoder 块,主要由 resnet, transformer, interpolate 组成,用于融合深层特征和浅层特征.

ControlNet应用于Stable Diffusion做微调,也即应用于其中UNet的 decoder 部分,使这部分网络能进一步融合作为条件的图像。用 t t t表示时间步, c t c_t ct表示 prompt 条件, c f c_f cf表示条件图像在隐空间上的表示,修改后的UNet结构为

在这里插入图片描述


Training

z 0 z_0 z0表示原始图像的隐向量,经过时间步 t t t后加噪的图像表示为 z t z_t zt,应用了ControlNet的UNet表示为 ϵ θ \epsilon_{\theta} ϵθ,训练时的损失函数可以表示为

L = E z 0 , t , c t , c f , ϵ ∈ N ( 0 , I ) [ ∣ ∣ ϵ − ϵ θ ( z t , t , c t , c f ) ∣ ∣ 2 2 ] \large \mathcal{L}=\mathbb{E}_{ z_0,t,c_t,c_f,\epsilon\in\mathcal{N}(0,I)}\left[||\epsilon-\epsilon_{\theta}(z_t,t,c_t,c_f)||_2^2\right] L=Ez0,t,ct,cf,ϵN(0,I)[∣∣ϵϵθ(zt,t,ct,cf)22]

在实际训练过程中,作者随机将 50 % 50\% 50%的 prompt 置为空字符串,这种做法能使ControlNet学习到图像条件的语义信息. 由于zero convolution不会引入额外的噪声,因此在训练过程中整个Stable Diffusion模型仍然能生成高质量的图片. 基于这一特性,作者观察到,微调时模型并非逐渐学习到图像条件,而是在训练步数低于 10 K 10\mathrm{K} 10K时的某一步开始突然遵从图像条件. 作者称这其为 “sudden convergence phenomenon”
[图片]



Inference

Stable Diffusion使用CFG控制条件强弱,令 ϵ u c \epsilon_{uc} ϵuc表示无 prompt 条件的模型输出, ϵ c \epsilon_{c} ϵc表示有 prompt 条件的模型输出,超参数 β c f g \beta_{cfg} βcfg表示 prompt 条件的强弱,模型最终的输出 ϵ p r d \epsilon_{prd} ϵprd可以表示为

ϵ p r d = ϵ u c + β c f g ( ϵ c − ϵ u c ) \large \epsilon_{\mathrm{prd}}=\epsilon_{\mathrm{uc}}+\beta_{\mathrm{cfg}}(\epsilon_{\mathrm{c}}-\epsilon_{\mathrm{uc}}) ϵprd=ϵuc+βcfg(ϵcϵuc)

在没有 prompt 条件的极端情况下,如果抽取完深层特征的图像条件同时加到 ϵ u c \epsilon_{uc} ϵuc ϵ c \epsilon_{c} ϵc上,这会使CFG完全失去控制条件强弱的作用;如果只加到 ϵ c \epsilon_{c} ϵc上,又会使控制条件对输出图像的影响过大. 因此,作者提出一种叫做Classifier-free guidance resolution weighting(CFG-RW)的方法. 具体做法,把图像条件加到 ϵ c \epsilon_{c} ϵc上,在ControlNet每一层输出加回UNet前乘系数 w i w_i wi( = 64 / h i =64/h_i =64/hi h i h_i hi为第 i i i个 decoder 块的尺寸). 下图分别展示了该讨论各种情况下的输出图像:
[图片]

有了上述方法之后,结合不同类别的图像条件,也只需要对应相加即可.


Experiments

消融实验

探索ControlNet其他可能结构

  • zero convolution换成随机初始化的卷积层
  • 只使用一个卷积层作为ControlNet
    [图片]



定量分析

作者使用 ADE20K 作为测试集,在 OneFormer 上做语义分割,对比不同方法重构图像和原图像的 IoU .
[图片]

之后,作者评估了不同模型的 FID、CLIP score、CLIP aesthetic score.

[图片]

下图展示了不同模型实际生成的图片
[图片]




在作者 github 上的一些讨论

消融实验更进一步的探索

discussion 链接
ControlNet简化为ControlNet-liteControlNet-mlp两种模型:
[图片]

作者从根据一张房子的图片做了简单地涂鸦风格处理,作为控制条件

在精心设计 prompt 的情况下,发现原版模型和改后的两种模型输出的图像效果都不错.

Professional high-quality wide-angle digital art of a house designed by frank lloyd wright. A delightful winter scene. photorealistic, epic fantasy, dramatic lighting, cinematic, extremely high detail, cinematic lighting, trending on artstation, cgsociety, realistic rendering of Unreal Engine 5, 8k, 4k, HQ, wallpaper

(分别为`ControlNet`、`ControlNet-lite`、`ControlNet-mlp`的输出)

但是当 prompt 为空时,两种改版都很拉胯.

(分别为`ControlNet`、`ControlNet-lite`、`ControlNet-mlp`的输出)

一方面,这样的对比说明更深的 encoder 结构确实拥有更强的识别能力,所以如果你的目标是训练稳健的ControlNet投入到生产环境,这样的识别能力是很重要的. 反之,如果用来做解决特定问题的研究或者训练集足够简单,那可以考虑轻量化的方案.
另一方面,这也解释了ControlNet接受 prompt 条件和时间步输入是重要的,因为这么做可以让使用者仍然能靠 prompt 条件调整模型的输出.



Precomputed ControlNet 加快模型推理

discussion 链接
主要 idea 如下图所示:
[图片]

这样做可以提前计算好ControlNet中每个块的输出,在推理时直接加到原模型的UNet上.
作者观察到这样训练的模型生成的图像更假,并且更不稳健,以失败告终.
评论中有人提到可以尝试使用 NAS (neural architecture search) 探索更好的模型结构,以降低 GPU 消耗.



迁移控制能力到其他 SD1.X 模型上

discussion 链接
作者尝试将在 Stable Diffusion 1.5上训练的ControlNet迁移到AnythingV3上,作者给出的方法是:

AnythingV3_control_openpose = AnythingV3 + SD15_control_openpose – SD15

限制有两点:

  • text encoder 不同会导致意外结果
  • 在例如 human pose 的应用中,输入最好不是二刺螈人物图片,因为检测姿势用的 OpenPose 不擅长处理二刺螈人物.

这种方法已经过时了. 目前在实际应用中,直接把ControlNet插到其他 SD1.X 模型上就行.



其他

  • Riffusion + ControlNet 音乐修复
  • 将原图转换成像素风格
  • 人物换衣
  • 调色

这篇关于【论文阅读】ControlNet、文章作者 github 上的 discussions的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/624240

相关文章

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

如何提高 GitHub 的下载速度

如何提高 GitHub 的下载速度 文章目录 如何提高 GitHub 的下载速度1. 注册账号2. 准备好链接3. 创建仓库4. 在码云上下载代码5. 仓库更新了怎么办 一般来说,国内的朋友从 GitHub 上面下载代码,速度最大是 20KB/s,这种龟速,谁能忍受呢? 本文介绍一种方法——利用“码云”,可以大大提高下载速度,亲测有效。 1. 注册账号 去“码云”注册一

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin