【保姆级教程|YOLOv8改进】【3】使用FasterBlock替换C2f中的Bottleneck

2024-01-19 16:12

本文主要是介绍【保姆级教程|YOLOv8改进】【3】使用FasterBlock替换C2f中的Bottleneck,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
26.【基于YOLOv8深度学习的人脸面部表情识别系统】27.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
28.【基于YOLOv8深度学习的智能肺炎诊断系统】29.【基于YOLOv8深度学习的葡萄簇目标检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

前言

在这里插入图片描述
FasterNet是为了提升网络的推理速度而设计的一种新型的神经网络结构,它比其他网络在各种视觉任务上实现了更高的运行速度,同时对准确性没有降低。本文详细介绍了如何使用FasterNet中的FasterBlock替换YOLOv8的C2fBottleneck模块,并且使用修改后的yolov8进行目标检测训练与推理本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。

本文改进使用的ultralytics版本为:ultralytics == 8.0.227

目录

  • 前言
  • 1.FasterNet简介
    • 1.1 FasterNet网络结构
    • 1.2 性能对比
  • 2.使用FasterBlock替换C2f中的Bottleneck
    • 替换位置与替换后网络结构示意
    • 定义`C2f_Faster`类
    • 在不同文件导入新建的C2f类
    • 在`parse_model`解析函数中添加`C2f_Faster`类
    • 创建新的配置文件`c2f_Faster_yolov8.yaml`
    • 新的`c2f_Faster_yolov8.yaml`配置文件与原yolov8.yaml文件的对比如下:
  • 加载配置文件并训练
  • 模型推理
  • 【源码免费获取】
  • 结束语

1.FasterNet简介

论文发表时间:2023.05.21

github地址:https://github.com/JierunChen/FasterNet.
paper地址:https://arxiv.org/abs/2303.03667

在这里插入图片描述

摘要:为了设计快速的神经网络,许多研究都专注于减少浮点运算量(FLOPs)。然而,我们观察到这种FLOPs的减少并不一定导致延迟的相似程度的减少。这主要是因为浮点操作每秒(FLOPS)效率低下。为了实现更快的网络,我们重新审视了流行的操作符,并证明了低FLOPS主要是由于操作符的频繁内存访问,特别是深度卷积。因此,我们提出了一种新颖的部分卷积(PConv),通过同时减少冗余的计算和内存访问来更高效地提取空间特征。在我们的PConv基础上,我们进一步提出了FasterNet,这是一系列新的神经网络,比其他网络在各种视觉任务上实现了更高的运行速度,同时对准确性没有妥协。例如,在ImageNet-1k上,我们小巧的FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileViT-XXS快2.8倍、3.3倍和2.4倍,同时准确率更高2.9%。我们的大型FasterNet-L在GPU上实现了令人印象深刻的83.5%的Top-1准确率,与新兴的Swin-B不相上下,同时在GPU上推理吞吐量比Swin-B高出36%,在CPU上节省了37%的计算时间。

论文主要亮点如下:
• 我们指出在实现更快的神经网络时,实现更高的FLOPS比仅仅减少FLOPS更重要。
• 我们引入了一种简单而快速有效的操作符,称为PConv,它有很高的潜力可以取代现有的首选选择DWConv。
• 我们引入了FasterNet,在各种设备上都表现出非常快的运行速度,如GPU、CPU和ARM处理器。
• 我们对各种任务进行了广泛的实验证明了我们的PConv和FasterNet的高速和有效性。

1.1 FasterNet网络结构

在这里插入图片描述

1.2 性能对比

在这里插入图片描述
在这里插入图片描述

2.使用FasterBlock替换C2f中的Bottleneck

替换位置与替换后网络结构示意

C2f中替换的位置
在这里插入图片描述
替换后的YOLOv8网络结构如下:
在这里插入图片描述

定义C2f_Faster

ultralytics/nn/modules/block.py中添加如下代码块,并定义C2f_Faster类:

from timm.models.layers import DropPathclass Partial_conv3(nn.Module):def __init__(self, dim, n_div=4, forward='split_cat'):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x):# only for inferencex = x.clone()  # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x):# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xclass Faster_Block(nn.Module):def __init__(self,inc,dim,n_div=4,mlp_ratio=2,drop_path=0.1,layer_scale_init_value=0.0,pconv_fw_type='split_cat'):super().__init__()self.dim = dimself.mlp_ratio = mlp_ratioself.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.n_div = n_divmlp_hidden_dim = int(dim * mlp_ratio)mlp_layer = [Conv(dim, mlp_hidden_dim, 1),nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)]self.mlp = nn.Sequential(*mlp_layer)self.spatial_mixing = Partial_conv3(dim,n_div,pconv_fw_type)self.adjust_channel = Noneif inc != dim:self.adjust_channel = Conv(inc, dim, 1)if layer_scale_init_value > 0:self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.forward = self.forward_layer_scaleelse:self.forward = self.forwarddef forward(self, x):if self.adjust_channel is not None:x = self.adjust_channel(x)shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.mlp(x))return xdef forward_layer_scale(self, x):shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))return xclass C2f_Faster(C2f):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):super().__init__(c1, c2, n, shortcut, g, e)self.m = nn.ModuleList(Faster_Block(self.c, self.c) for _ in range(n))

在不同文件导入新建的C2f类

ultralytics/nn/modules/block.py顶部,all中添加刚才创建的类的名称:C2f_Faster,如下图所示:
在这里插入图片描述

同样需要在ultralytics/nn/modules/__init__.py文件,相应位置导入刚出创建的C2f_Faster类。如下图:
在这里插入图片描述

还需要在ultralytics/nn/tasks.py中导入创建的C2f_Faster类,如下图:
在这里插入图片描述

parse_model解析函数中添加C2f_Faster

ultralytics/nn/tasks.pyparse_model解析网络结构的函数中,加入C2f_Faster类,如下图:
在这里插入图片描述

创建新的配置文件c2f_Faster_yolov8.yaml

ultralytics/cfg/models/v8目录下新建c2f_Faster_yolov8.yaml配置文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f_Faster, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f_Faster, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f_Faster, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f_Faster, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f_Faster, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f_Faster, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f_Faster, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f_Faster, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

新的c2f_Faster_yolov8.yaml配置文件与原yolov8.yaml文件的对比如下:

在这里插入图片描述

加载配置文件并训练

加载c2f_Faster_yolov8.yaml配置文件,并运行train.py训练代码:

#coding:utf-8from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/c2f_Faster_yolov8.yaml')model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='datasets/TomatoData/data.yaml', epochs=250, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:
在这里插入图片描述

模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train2/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_31.jpeg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述


结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

这篇关于【保姆级教程|YOLOv8改进】【3】使用FasterBlock替换C2f中的Bottleneck的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622958

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J